Tissue engineering approaches have been adopted to address challenges in osteochondral tissue regeneration. Single phase scaffolds, which consist of only one single material throughout the whole structure, have been used extensively in these tissue engineering approaches. However, a single phase scaffold is insufficient in providing all the properties required for regeneration and repair of osteochondral defects. Biphasic scaffolds with two distinct phases of titanium/type 1 c ollagen and titanium-tantalum/type 1 collagen were developed for the first time using selective laser melting and collagen infiltration. Observation of the biphasic scaffolds demonstrated continuous interface between the two phases and mechanical characterization of the metallic scaffolds support the feasibility of the newly developed scaffolds for tissue engineering in osteochondral defects.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7575621PMC
http://dx.doi.org/10.18063/IIB.2017.01.007DOI Listing

Publication Analysis

Top Keywords

tissue engineering
12
selective laser
8
laser melting
8
melting collagen
8
engineering approaches
8
single phase
8
osteochondral defects
8
biphasic scaffolds
8
scaffolds
5
fabrication titanium
4

Similar Publications

An exchangeable SIM probe for monitoring organellar dynamics of necrosis cells and intracellular water heterogeneity in kidney repair.

Proc Natl Acad Sci U S A

January 2025

Institute of Optical Materials and Chemical Biology, Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, Guangxi, People's Republic of China.

Monitoring subcellular organelle dynamics in real time and precisely assessing membrane heterogeneity in living cells are very important for studying fundamental biological mechanisms and gaining a comprehensive understanding of cellular processes. However, there remains a shortage of effective tools for these purposes. Herein, we propose a strategy to develop the exchangeable water-sensing probeAPBD for time-lapse imaging of dynamics in cellular membrane-bound organelle morphology with structured illumination microscopy at the nanoscale.

View Article and Find Full Text PDF

Spatial distributions of morphogens provide positional information in developing systems, but how the distributions are established and maintained remains an open problem. Transport by diffusion has been the traditional mechanism, but recent experimental work has shown that cells can also communicate by filopodia-like structures called cytonemes that make direct cell-to-cell contacts. Here we investigate the roles each may play individually in a complex tissue and how they can jointly establish a reliable spatial distribution of a morphogen.

View Article and Find Full Text PDF

Osteoarthritis (OA) is a multifaceted degenerative joint disorder affected by various risk factors such as age, mechanical stress, inflammation, and metabolic influences. These elements contribute to its diverse phenotypes and endotypes, underscoring the disease's inherent complexity. The involvement of multiple tissues and their interplay further complicates OA's investigation.

View Article and Find Full Text PDF

Applications of Chitosan and its Derivatives in the Treatment of Osteoarthritis.

Aging Dis

December 2024

Shandong Laboratory of Biomedical Materials Engineering, Success Bio-Tech Co., Ltd., Jinan, China.

Osteoarthritis (OA) is a common joint disease, which is mainly characterized by the degeneration of articular cartilage, inflammation of the synovial membrane of the joint, and changes in the surrounding bone tissue. With the increase of age and weight, the incidence of OA gradually increases, which seriously affects the quality of life of patients. The primary pharmacological treatments for OA include analgesics and non-steroidal anti-inflammatory drugs.

View Article and Find Full Text PDF

This study aims to identify novel loci associated with sarcopenia-related traits in UK Biobank (UKB) through multi-trait genome-wide analysis. To identify novel loci associated with sarcopenia, we integrated the genome-wide association studies (GWAS) of usual walking pace (UWP) and hand grip strength (HGS) to conduct a joint association study known as multi-trait analysis of GWAS (MTAG). We performed a transcriptome-wide association study (TWAS) to analyze the results of MTAG in relation to mRNA expression data for genes identified in skeletal muscle.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!