Adenosine and ATPγS protect against bacterial pneumonia-induced acute lung injury.

Sci Rep

Pulmonary Division, Vascular Biology Center, Medical College of Georgia, Augusta University, 1459 Laney Walker Blvd, CB 3210-A, Augusta, GA, 30912, USA.

Published: October 2020

Lipopolysaccharide (LPS), a component of the outer membrane of gram-negative bacteria, disrupts the alveolar-capillary barrier, triggering pulmonary vascular leak thus inducing acute lung injury (ALI). Extracellular purines, adenosine and ATP, protected against ALI induced by purified LPS. In this study, we investigated whether these purines can impact vascular injury in more clinically-relevant E.coli (non-sterile LPS) murine ALI model. Mice were inoculated with live E. coli intratracheally (i.t.) with or without adenosine or a non-hydrolyzable ATP analog, adenosine 5'-(γ-thio)-triphosphate (ATPγS) added intravenously (i.v.). After 24 h of E. coli treatment, we found that injections of either adenosine or ATPγS 15 min prior or adenosine 3 h after E.coli insult significantly attenuated the E.coli-mediated increase in inflammatory responses. Furthermore, adenosine prevented weight loss, tachycardia, and compromised lung function in E. coli-exposed mice. Accordingly, treatment with adenosine or ATPγS increased oxygen saturation and reduced histopathological signs of lung injury in mice exposed to E. coli. Lastly, lung-targeting gene delivery of adenosine or ATPγS downstream effector, myosin phosphatase, significantly attenuated the E. coli-induced compromise of lung function. Collectively, our study has demonstrated that adenosine or ATPγS mitigates E. coli-induced ALI in mice and may be useful as an adjuvant therapy in future pre-clinical studies.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7581771PMC
http://dx.doi.org/10.1038/s41598-020-75224-0DOI Listing

Publication Analysis

Top Keywords

adenosine atpγs
20
lung injury
12
adenosine
10
acute lung
8
lung function
8
lung
5
atpγs
5
atpγs protect
4
protect bacterial
4
bacterial pneumonia-induced
4

Similar Publications

Analysis of the effect of platelet function and different doses of ticagrelor after flow diverter treatment of intracranial aneurysms.

Neurosurg Rev

January 2025

Neurosurgery Center, Department of Cerebrovascular Surgery, Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Zhujiang Hospital, Southern Medical University, Guangzhou, China.

Ticagrelor has become the standard drug for the treatment of intracranial aneurysms (IAs) with flow diverters (FDs), but the dosage has not been standardized. The effect of platelet function on clinical and imaging prognosis remains unclear. This study aimed to show the effects of different doses of ticagrelor and platelet aggregation function on the clinical and imaging prognosis after FDs treatment of aneurysms.

View Article and Find Full Text PDF

Adenosine-to-inosine (A-to-I) editing, catalyzed by adenosine deaminases acting on RNA (ADARs), is a prevalent post-transcriptional modification that is vital for numerous biological functions. Given that this modification impacts global gene expression, RNA localization, and innate cellular immunity, dysregulation of A-to-I editing has unsurprisingly been linked to a variety of cancers and other diseases. However, our current understanding of the underpinning mechanisms that connect dysregulated A-to-I editing and disease processes remains limited.

View Article and Find Full Text PDF

Editing specificity of ADAR isoforms.

Methods Enzymol

January 2025

Medical University of Vienna, Center of Anatomy and Cell Biology, Division of Cell and Developmental Biology, Schwarzspanier Strasse, Vienna, Austria. Electronic address:

Adenosine to inosine deaminases acting on RNA (ADARs) enzymes are found in all metazoa. Their sequence and protein organization is conserved but also shows distinct differences. Moreover, the number of ADAR genes differs between organisms, ranging from one in flies to three in mammals.

View Article and Find Full Text PDF

A probe-based capture enrichment method for detection of A-to-I editing in low abundance transcripts.

Methods Enzymol

January 2025

Department of Biology, Indiana University, Bloomington, Indiana, United States. Electronic address:

Exactly two decades ago, the ability to use high-throughput RNA sequencing technology to identify sites of editing by ADARs was employed for the first time. Since that time, RNA sequencing has become a standard tool for researchers studying RNA biology and led to the discovery of RNA editing sites present in a multitude of organisms, across tissue types, and in disease. However, transcriptome-wide sequencing is not without limitations.

View Article and Find Full Text PDF

Obstacles in quantifying A-to-I RNA editing by Sanger sequencing.

Methods Enzymol

January 2025

Faculty of Biology, Technion - Israel Institute of Technology, Technion City, Haifa, Israel. Electronic address:

Adenosine-to-Inosine (A-to-I) RNA editing is the most prevalent type of RNA editing, in which adenosine within a completely or largely double-stranded RNA (dsRNA) is converted to inosine by deamination. RNA editing was shown to be involved in many neurological diseases and cancer; therefore, detection of A-to-I RNA editing and quantitation of editing levels are necessary for both basic and clinical biomedical research. While high-throughput sequencing (HTS) is widely used for global detection of editing events, Sanger sequencing is the method of choice for precise characterization of editing site clusters (hyper-editing) and for comparing levels of editing at a particular site under different environmental conditions, developmental stages, genetic backgrounds, or disease states.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!