Study Design: Single-center retrospective case series.
Objective: The purpose of this study was to assess the safety and accuracy of three-dimensional (3D)-printed individualized drill guides for pedicle and lateral mass screw insertion in the cervical and upper-thoracic region, by comparing the preoperative 3D surgical plan with the postoperative results.
Summary Of Background Data: Posterior spinal fusion surgery can provide rigid intervertebral fixation but screw misplacement involves a high risk of neurovascular injury. However, modern spine surgeons now have tools such as virtual surgical planning and 3D-printed drill guides to facilitate spinal screw insertion.
Methods: A total of 15 patients who underwent posterior spinal fusion surgery involving patient-specific 3D-printed drill guides were included in this study. After segmentation of bone and screws, the postoperative models were superimposed onto the preoperative surgical plan. The accuracy of the realized screw trajectories was quantified by measuring the entry point and angular deviation.
Results: The 3D deviation analysis showed that the entry point and angular deviation over all 76 screw trajectories were 1.40 ± 0.81 mm and 6.70 ± 3.77°, respectively. Angular deviation was significantly higher in the sagittal plane than in the axial plane (P = 0.02). All screw positions were classified as "safe" (100%), showing no neurovascular injury, facet joint violation, or violation of the pedicle wall.
Conclusions: 3D virtual planning and 3D-printed patient-specific drill guides appear to be safe and accurate for pedicle and lateral mass screw insertion in the cervical and upper-thoracic spine. The quantitative 3D deviation analyses confirmed that screw positions were accurate with respect to the 3D-surgical plan.Level of Evidence: 4.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7787187 | PMC |
http://dx.doi.org/10.1097/BRS.0000000000003747 | DOI Listing |
Eur J Trauma Emerg Surg
January 2025
Department of Trauma Surgery, University Medical Centre Groningen, University of Groningen, Groningen, The Netherlands.
Purpose: The aim of this study was to evaluate the feasibility of using patient-specific implants (PSI) for complex shaft corrective osteotomies in multiplanar deformities of long bones in the lower extremities. Additionally, it aimed to investigate the added value of these implants by quantifying surgical accuracy on postoperative CT, comparing their outcomes to two commonly used techniques: 3D virtual visualizations and 3D-printed surgical guides.
Methods: Six tibial and femoral shaft corrective osteotomies were planned and performed on three Thiel embalmed human specimen.
Sci Rep
January 2025
Mining College, Guizhou University, Guiyang, 550025, China.
The factors leading to mine water inrush accidents are mainly sources of water, water channels, and intensity of water inrush. Mine water rush depends mostly on whether damage leads to the overlying strata of the working face penetrating the overlying aquifer. There is therefore a need to characterize how the overlying strata of the coal seam roof fails and the development height of the water-conducting fracture zone during a roof water inrush incident.
View Article and Find Full Text PDFEur Arch Otorhinolaryngol
January 2025
Vrije Universiteit Brussel, Brussels Health Centre, Brussels, Belgium.
Purpose: Cochlear implants (CI) are the most successful bioprosthesis in medicine probably due to the tonotopic anatomy of the auditory pathway and of course the brain plasticity. Correct placement of the CI arrays, respecting the inner ear anatomy are therefore important. The ideal trajectory to insert a cochlear implant array is defined by an entrance through the round window membrane and continues as long as possible parallel to the basal turn of the cochlea.
View Article and Find Full Text PDFOral Maxillofac Surg
January 2025
Research Center for Digital Technologies in Dentistry and CAD/CAM, Department of Dentistry, Faculty of Medicine and Dentistry, Danube Private University, Steiner Landstraße 123, Krems an der Donau, 3500, Austria.
Purpose: Precise implant placement is essential for optimal functional and aesthetic outcomes. Digital technologies, such as computer-assisted implant surgery (CAIS), have improved implant outcomes. However, conventional methods such as static and dynamic CAIS (dCAIS) require complex equipment.
View Article and Find Full Text PDFJ Clin Orthop Trauma
February 2025
Joints and Spine Clinic, Mahavir Nagar, Kandivali West, Mumbai, 400067, India.
Introduction: Numerous orthopaedic procedures including dynamic hip screw plating and various osteotomies require placement of a reference guide pin or K wire to direct bone cuts or for drilling screw holes. Appropriate positioning of these wires is a critical component of surgery. Irrespective of whether one is a seasoned surgeon or an apprentice, these wires often need repositioning and readjustment.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!