Advances in microbiome science require a better understanding of how beneficial microbes adapt to hosts. We tested whether hosts select for more-cooperative microbial strains with a year-long evolution experiment and a cross-inoculation experiment designed to explore how nitrogen-fixing bacteria (rhizobia) adapt to legumes. We paired the bacterium with one of five genotypes that vary in how strongly they "choose" bacterial symbionts. Independent of host choice, rapidly adapted to its local host genotype, and derived microbes were more beneficial when they shared evolutionary history with their host. This local adaptation was mostly limited to the symbiosis plasmids, with mutations in putative signaling genes. Thus, cooperation depends on the match between partner genotypes and increases as bacteria adapt to their local host.

Download full-text PDF

Source
http://dx.doi.org/10.1126/science.abb7222DOI Listing

Publication Analysis

Top Keywords

local host
12
host genotype
8
host
5
experimental evolution
4
evolution microbes
4
microbes cooperative
4
local
4
cooperative local
4
genotype advances
4
advances microbiome
4

Similar Publications

Turning attention to tumor-host interface and focus on the peritumoral heterogeneity of glioblastoma.

Nat Commun

December 2024

Cancer Center, Department of Neurosurgery, Zhejiang Provincial People's Hospital,Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China.

Approximately 90% of glioblastoma recurrences occur in the peritumoral brain zone (PBZ), while the spatial heterogeneity of the PBZ is not well studied. In this study, two PBZ tissues and one tumor tissue sample are obtained from each patient via preoperative imaging. We assess the microenvironment and the characteristics of infiltrating immune/tumor cells using various techniques.

View Article and Find Full Text PDF

Metabolic Analysis of Tumor Cells Within Ameloblastoma at the Single-Cell Level.

Oral Dis

December 2024

State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China.

Background: To meet their high energy needs, tumor cells undergo aberrant metabolic reprogramming. A tumor cell may expertly modify its metabolic pathways and the differential expression of the genes for metabolic enzymes. The physiological requirements of the host tissue and the tumor cell of origin mostly dictate metabolic adaptation.

View Article and Find Full Text PDF

Linking D-Band Center Modulation with Rapid Reversible Sulfur Conversion Kinetics via Structural Engineering of VS₂.

Small

December 2024

National Local Joint Engineering Laboratory for Key Materials of New Energy Storage Battery, Hunan Province Key Laboratory for Electrochemical Energy Storage and Conversion, School of Chemistry, Xiangtan University, Xiangtan, 411105, China.

The rapid catalytic conversion toward polysulfides is considered to be an advantageous approach to boost the reaction kinetics and inhibit the shuttle effect in lithium-sulfur (Li─S) batteries. However, the prediction of high catalytic activity Li─S catalysts has become challenging given the carelessness in the relationship between important electronic characteristics of catalysts and catalytic activity. Herein, the relationships between the D-band regulation of catalysts with reaction kinetics toward polysulfides are described.

View Article and Find Full Text PDF

Global seasonal influenza circulation involves a complex interplay between local (seasonality, demography, host immunity) and global factors (international mobility) shaping recurrent epidemic patterns. No studies so far have reconciled the two spatial levels, evaluating the coupling between national epidemics, considering heterogeneous coverage of epidemiological, and virological data, integrating different data sources. We propose a novel-combined approach based on a dynamical model of global influenza spread (GLEAM), integrating high-resolution demographic, and mobility data, and a generalized linear model of phylogeographic diffusion that accounts for time-varying migration rates.

View Article and Find Full Text PDF

Deciphering bacterial protein functions with innovative computational methods.

Trends Microbiol

December 2024

Department of Plant Pathology and Microbiology, Institute of Environmental Science, The Faculty of Agriculture, Food, and Environment, The Hebrew University of Jerusalem, Rehovot, Israel. Electronic address:

Bacteria colonize every niche on Earth and play key roles in many environmental and host-associated processes. The sequencing revolution revealed the remarkable bacterial genetic and proteomic diversity and the genomic content of cultured and uncultured bacteria. However, deciphering functions of novel proteins remains a high barrier, often preventing the deep understanding of microbial life and its interaction with the surrounding environment.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!