Distributed systems provide smart functionality to everyday objects with the help of wireless sensors using the internet. Since the last decade, the industry is struggling to develop efficient and intelligent protocols to integrate a huge number of smart objects in distributed computing environments. However, the main challenge for smart and distributed system designers lies in the integration of a large number of heterogeneous components for faster, cheaper, and more efficient functionalities. To deal with this issue, practitioners are using edge computing along with server and desktop technology for the development of smart applications by using Service-Oriented Architecture (SOA) where every smart object offers its functionality as a service, enabling other objects to interact with them dynamically. In order to make such a system, researchers have considered context-awareness and Quality of Service (QoS) attributes of device services. However, context modeling is a complicated task since it could include everything around the applications. Moreover, it is also important to consider non-functional interactions that may have an impact on the behavior of the complete system. In this regard, various research dimensions are explored. However, rich context-aware modeling, QoS, user priorities, grouping, and value type direction along with uncertainty are not considered properly while modeling of incomplete or partial domain knowledge during ontology engineering, resulting in low accuracy of results. In this paper, we present a semantic and logic-based formal framework (hybrid) to find the best service among many candidate services by considering the limitations of existing frameworks. Experimental results of the proposed framework show the improvement of the discovered results.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7590014PMC
http://dx.doi.org/10.3390/s20205918DOI Listing

Publication Analysis

Top Keywords

smart
6
hybrid semantic
4
semantic knowledge
4
knowledge integration
4
integration sharing
4
sharing approach
4
distributed
4
approach distributed
4
distributed smart
4
smart environments
4

Similar Publications

Background: Conversational agents (CAs) are finding increasing application in health and social care, not least due to their growing use in the home. Recent developments in artificial intelligence, machine learning, and natural language processing have enabled a variety of new uses for CAs. One type of CA that has received increasing attention recently is smart speakers.

View Article and Find Full Text PDF

Background And Objectives: Safety and efficacy of IV onasemnogene abeparvovec has been demonstrated for patients with spinal muscular atrophy (SMA) weighing <8.5 kg. SMART was the first clinical trial to evaluate onasemnogene abeparvovec for participants weighing 8.

View Article and Find Full Text PDF

Ceftobiprole was recently approved by the United States (US) Food and Drug Administration (FDA) for the treatment of adult patients with bacteremia, including right-side endocarditis, acute bacterial skin and skin structure infections, and community-acquired bacterial pneumonia in adults and pediatrics. Ceftobiprole is an advanced-generation cephalosporin approved in many countries for the treatment of adults with community-acquired pneumonia and hospital-acquired pneumonia, excluding ventilator-associated pneumonia. We evaluated the activities of ceftobiprole and comparators against methicillin-resistant (MRSA) and multidrug-resistant (MDR) clinical isolates.

View Article and Find Full Text PDF

A mononuclear iron(II) complex constructed using a complementary ligand pair exhibits intrinsic luminescence-spin-crossover coupling.

Dalton Trans

January 2025

State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, No. 2 Linggong Road, Dalian 116024, P. R. China.

Molecular materials that exhibit synergistic coupling between luminescence and spin-crossover (SCO) behaviors hold significant promise for applications in molecular sensors and memory devices. However, the rational design and underlying coupling mechanisms remain substantial challenges in this field. In this study, we utilized a luminescent complementary ligand pair as an intramolecular luminophore to construct a new Fe-based SCO complex, namely [FeLL](BF)·HO (1-Fe, L is a 2,2':6',2''-terpyridine (TPY) derivative ligand and L is 2,6-di-1-pyrazol-1-yl-4-pyridinecarboxylic acid), and two isomorphic analogs (2-Co, [CoLL](BF)·HO and 3-Zn, [ZnLL](BF)·HO).

View Article and Find Full Text PDF

Over-oxidation of surface ruthenium active sites of RuO-based electrocatalysts leads to the formation of soluble high-valent Ru species and subsequent structural collapse of electrocatalysts, which results in their low stability for the acidic oxygen evolution reaction (OER). Herein, a binary RuO/NbO electrocatalyst with abundant and intimate interfaces has been rationally designed and synthesized to enhance its OER activity in acidic electrolyte, delivering a low overpotential of 179 mV at 10 mA cm, a small Tafel slope of 73 mV dec, and a stabilized catalytic durability over a period of 750 h. Extensive experiments have demonstrated that the spillover of active oxygen intermediates from RuO to NbO and the subsequent participation of lattice oxygen of NbO instead of RuO for the acidic OER suppressed the over-oxidation of surface ruthenium species and thereby improved the catalytic stability of the binary electrocatalysts.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!