is a Gram-negative bacterium responsible for a number of human respiratory diseases and linked to some chronic inflammatory diseases. The major outer membrane protein (MOMP) of is a conserved immunologically dominant protein located in the outer membrane, which, together with its surface exposure and abundance, has led to MOMP being the main focus for vaccine and antimicrobial studies in recent decades. MOMP has a major role in the chlamydial outer membrane complex through the formation of intermolecular disulphide bonds, although the exact interactions formed are currently unknown. Here, it is proposed that due to the large number of cysteines available for disulphide bonding, interactions occur between cysteine-rich pockets as opposed to individual residues. Such pockets were identified using a MOMP homology model with a supporting low-resolution (~4 Å) crystal structure. The localisation of MOMP in the membrane was assessed using direct stochastic optical reconstruction microscopy (dSTORM), which showed a decrease in membrane clustering with cysteine-rich regions containing two mutations. These results indicate that disulphide bond formation was not disrupted by single mutants located in the cysteine-dense regions and was instead compensated by neighbouring cysteines within the pocket in support of this cysteine-rich pocket hypothesis.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7589890 | PMC |
http://dx.doi.org/10.3390/biology9100344 | DOI Listing |
Genome Med
January 2025
Otology & Neurotology Group CTS495, Instituto de Investigación Biosanitario, Ibs.GRANADA, Universidad de Granada, 18071, Granada, Spain.
Background: Familial Meniere's disease (FMD) is a rare polygenic disorder of the inner ear. Mutations in the connexin gene family, which encodes gap junction proteins, can also cause hearing loss, but their role in FMD is largely unknown.
Methods: We retrieved exome sequencing data from 94 individuals in 70 Meniere's disease (MD) families.
BMC Cancer
January 2025
Department of Otorhinolaryngology, Shenzhen Key Laboratory of Otorhinolaryngology, Longgang Otorhinolaryngology Hospital, Shenzhen Institute of Otorhinolaryngology, No. 3004 Longgang Avenue, Shenzhen, Guangdong, China.
Background: To investigate the role of the translocase of the outer mitochondrial membrane 40 (TOM40) in oral squamous cell carcinoma (OSCC) with the aim of identifying new biomarkers or potential therapeutic targets.
Methods: TOM40 expression level in OSCC was evaluated using datasets downloaded from The Cancer Genome Atlas (TCGA), as well as clinical data. The correlation between TOM40 expression level and the clinicopathological parameters and survival were analyzed in TCGA.
Sci China Life Sci
January 2025
College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China.
Mitochondrial Rho-GTPase 1 (MIRO1) is an outer mitochondrial membrane protein which regulates mitochondrial transport and mitophagy in mitosis. In present study, we reported the crucial roles of MIRO1 in mammalian oocyte meiosis and its potential relationship with aging. We found that MIRO1 expressed in mouse and porcine oocytes, and its expression decreased in aged mice.
View Article and Find Full Text PDFSci Adv
January 2025
Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China.
Bacterial social interactions play crucial roles in various ecological, medical, and biotechnological contexts. However, predicting these interactions from genome sequences is notoriously difficult. Here, we developed bioinformatic tools to predict whether secreted iron-scavenging siderophores stimulate or inhibit the growth of community members.
View Article and Find Full Text PDFActa Neurobiol Exp (Wars)
January 2025
Department of Physiology, School of Medicine, Jiroft University of Medical Sciences, Jiroft, Iran; Bio Environmental Health Hazards Research Center, Jiroft University of Medical Sciences, Jiroft, Iran.
In recent years, growing evidence suggests that lipopolysaccharide (LPS), a bacterial endotoxin found in the outer membrane of gram‑negative bacteria, can influence cognitive functions, particularly memory formation and retrieval. However, the underlying mechanisms through which LPS exerts its effects on memory remain incompletely understood. This review used various electronic databases, including PubMed, Scopus, and Web of Science, to identify relevant studies published between 2000 and 2024.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!