MALDI-TOF/TOF tandem mass spectrometry imaging reveals non-uniform distribution of disaccharide isomers in plant tissues.

Food Chem

Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; National Center for Mass Spectrometry in Beijing, Beijing 100190, China. Electronic address:

Published: February 2021

Mass spectrometry imaging (MSI) is a powerful technique for investigating the biomolecular locations within tissues. However, the isomeric compounds are rarely distinguished due to inability of MSI to differentiate isomers in the probing area. Coupling tandem mass spectrometry with MSI can facilitate differentiating isomeric compounds. Here MALDI-TOF/TOF tandem mass spectrometry imaging approach was applied to probing the spatial distributions of isomeric disaccharides in plant tissues. First, MS/MS imaging analysis of disaccharide-matrix droplet spots demonstrated the feasibility of distinguishing isomeric species in tissues, by measuring the relative intensity of specific fragments. Then, tandem MS imaging of disaccharides in onion bulb tissues indicated that sucrose and other unknown non-sucrose disaccharides exhibit heterogeneous locations throughout the tissues. This method enables us to image disaccharide isomers differentially in biological tissues, and to discover new saccharide species in plant. This work also emphasizes the necessity of considering isobaric compounds when interpreting MSI results.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.foodchem.2020.127984DOI Listing

Publication Analysis

Top Keywords

mass spectrometry
16
tandem mass
12
spectrometry imaging
12
maldi-tof/tof tandem
8
disaccharide isomers
8
plant tissues
8
locations tissues
8
isomeric compounds
8
tissues
7
imaging
5

Similar Publications

This study investigates the chemical composition of the essential oil (EO) extracted by hydrodistillation from dry Eucalyptus leaves (Eucalyptus globulus) and its antifungal, antibacterial and antioxidant potential. The Eucalyptus leaves were harvested in the commune of Seraïdi (north-eastern Algeria). Chemical analysis carried out by chromatography coupled with mass spectrophotometry (GC-SM) revealed the presence of 20 molecules representing approximately 100% of the overall component, with a yield of 1.

View Article and Find Full Text PDF

This study evaluated the antioxidant and antiproliferative effects of aqueous, ethanolic and methanolic extracts of Sedum nicaeense flowers and leaves. The MTT assay assessed cytotoxicity against colorectal cancer cells (Caco-2, HCT-116), breast cancer cells (T47D, MCF-7) and normal fibroblasts (MRC-5), while the ferric-reducing antioxidant power (FRAP) assay measured antioxidant capacity. Essential oils from flowers and leaves were analyzed using gas chromatography-mass spectrometry (GC-MS).

View Article and Find Full Text PDF

A Chinese isolate of the fungus Penicillium chrysogenum was analyzed using liquid chromatography coupled with Q-Exactive Orbitrap mass spectrometry combined with Global Natural Products Social Networking (GNPS) on culture condition leading to the rapid identification of 20 secondary metabolites. Among them are eight polyketones, two phthalides, six diketopiperazine alkaloids, and others. A meleagrine network was examined and proposed as a promising candidate for new natural products.

View Article and Find Full Text PDF

Objective: This study aims to examine the changes in metabolic profiles in patients with patent foramen ovale (PFO) and migraine, as well as in patients with isolated migraine, before and after surgical intervention using metabolomics.

Methods: Patients were categorized into four groups: the simple migraine (SM) group, the PFO with migraine preoperative group (PRE), the PFO with migraine postoperative Day 3 group (POST_3d), and the PFO with migraine postoperative Day 30 group (POST_30d). Untargeted metabolomics using liquid chromatography-mass spectrometry (LC-MS) were employed to identify differential metabolites across these groups.

View Article and Find Full Text PDF

Rationale: Wildlife scientists are quantifying steroid hormones in a growing number of tissues and employing novel methods that must undergo validation before application. This study tested the accuracy and precision of liquid chromatography-tandem mass spectrometry (LC-MS/MS) methods for use on blubber samples from short-finned pilot whales (Globicephala macrorhynchus). We expanded upon a method for corticosteroid quantification by adding analytes and optimizing internal standard (IS) application.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!