Synergistic pathogenicity in sequential coinfection with fowl adenovirus type 4 and avian orthoreovirus.

Vet Microbiol

College of Animal Science and Technology, Shandong Agricultural University, 61 Daizong Street, Tai'an, Shandong Province, 271018, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Tai'an, Shandong, 271018, China; Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Tai'an, Shandong, 271018, China. Electronic address:

Published: December 2020

Hydropericardium hepatitis syndrome (HHS) is a fatal disease caused by fowl adenovirus serotype 4 (FAdV-4). Avian viral arthritis is an infectious disease characterized by movement disorders caused by avian orthoreovirus (ARV). In the early 2019, our epidemiologic survey on poultry diseases in eight commercial broiler farms in China showed that FAdV-4 and ARV have a high coinfection rate, accounting for 63 % of all ARV-positive samples. We designed chicken embryo and animal models to investigate the synergistic pathogenicity of FAdV-4 and ARV. Weakness and inappetence were observed in all specific-pathogen-free (SPF) chickens of the experimental group. FAdV-4 and ARV coinfection caused severe embryonic body and hepatic hemorrhage in SPF chicken embryos. Compared with the singular ARV-infected group, joint swelling was more severe in all coinfected groups. Compared with single virus infection, the coinfection of the two viruses increased the mortality of SPF chicken embryos and chickens. FAdV-4 and ARV coinfection resulted in significantly severe macroscopic and microscopic lesions of the liver, spleen, and kidney of SPF chickens. The detection results of viral load in allantoic fluid, liver, and cloacal swabs indicated that ARV enhanced FAdV-4 replication in SPF chicken embryos and chickens. Cytokine detection showed a significant change in interleukin-1 (IL-1), IL-6, and interferon-α (IFN-α) levels in coinfected groups compared with those in the single-infected groups. Additionally, FAdV-4 and ARV coinfection caused severe damage to the SPF chicken's immune system. In summary, these findings provide insights into the pathology, prevention, and treatment of FAdV-4 and ARV coinfection.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.vetmic.2020.108880DOI Listing

Publication Analysis

Top Keywords

fadv-4 arv
24
arv coinfection
16
spf chicken
12
chicken embryos
12
synergistic pathogenicity
8
fowl adenovirus
8
avian orthoreovirus
8
fadv-4
8
arv
8
spf chickens
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!