Combinatorial Approaches to Enhance DNA Damage following Enzyme-Mediated Depletion of L-Cys for Treatment of Pancreatic Cancer.

Mol Ther

Division of Pharmacology and Toxicology and Dell Pediatric Research Institute, The University of Texas at Austin, Austin, TX 78723, USA; Center for Molecular Carcinogenesis and Toxicology, The University of Texas at Austin, Austin, TX 78712, USA; Department of Pediatrics, The University of Texas Dell Medical School, LiveSTRONG Cancer Institutes, Austin, TX, USA. Electronic address:

Published: February 2021

Pancreatic ductal adenocarcinoma (PDAC) represents one of the deadliest forms of cancer with very few available therapeutic options. We previously reported that an engineered human enzyme, cyst(e)inase, which degrades L-cysteine (L-Cys) and cystine, inhibits growth of multiple cancer cells, including PDAC both in vitro and in vivo. Here, we show that cyst(e)inase treatment leads to increased clustered oxidative DNA damage, DNA single-strand breaks, apurinic/apyrimidinic sites, and DNA double-strand breaks (DSBs) in PDAC cells sensitive to intracellular depletion of L-Cys that is associated with reduced survival. BRCA2-deficient PDAC cells exhibited increased DSBs and enhanced sensitivity to cyst(e)inase. The blocking of a second antioxidant pathway (thioredoxin/thioredoxin reductase) using auranofin or inhibiting DNA repair using the poly (ADP-ribose) polymerase (PARP) inhibitor, olaparib, led to significant increases in DSBs following cyst(e)inase treatment in all PDAC cells examined. Cyst(e)inase plus olaparib also synergistically inhibited growth of sensitive and resistant PDAC cells in both xenograft and allograft tumor models. Collectively, these results demonstrate an important role for oxidative DNA damage and ultimately DNA DSBs in the anticancer action of cyst(e)inase. The data further show the potential for combining agents that target alternate antioxidant pathways or by targeting DNA repair pathways or genetic liabilities in DNA repair pathways to enhance the therapeutic action of cyst(e)inase for PDAC.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7854304PMC
http://dx.doi.org/10.1016/j.ymthe.2020.10.016DOI Listing

Publication Analysis

Top Keywords

pdac cells
16
dna damage
12
dna repair
12
dna
9
depletion l-cys
8
cysteinase treatment
8
oxidative dna
8
action cysteinase
8
repair pathways
8
pdac
7

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!