Studies in recent years have significantly expanded, refined, and redefined the repertoire of transporters and other proteins involved in iron and manganese (Mn) transport and homeostasis. In this review, we discuss highlights of the recent literature on iron and Mn transport, focusing on the roles of membrane transporters and related proteins. Studies are considered from the vantage point of main organs, tissues, and cell types that actively control whole-body iron or Mn homeostasis, with emphasis on studies in which in vivo metal transport was measured directly or implicated by using knockout mouse models. Overviews of whole-body and cellular iron and Mn homeostasis are also provided to give physiological context for key transporters and to highlight how they participate in the uptake, intracellular trafficking, and efflux of each metal. Important similarities and differences in iron and Mn transport are noted, and future research opportunities and challenges are identified.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8996561 | PMC |
http://dx.doi.org/10.1016/j.bbamcr.2020.118890 | DOI Listing |
ChemistryOpen
January 2025
Department of Chemical Oceanography, Cochin University of Science and Technology, Kochi, Kerala, India.
The alga contains salt and heavy metals that are accumulated in algae poses a significant challenge to the safe use of algae in soil fertilization and other applications. This study examines the relevance of algal biomass as an environmentally friendly fertilizer, thereby contributing to sustainable coastal management practices. In this study, the hot and cold extraction method were done to obtain the Ulva rigida extract.
View Article and Find Full Text PDFSci Rep
January 2025
Petroleum and Chemical Engineering, Faculty of Engineering, Universiti Teknologi Brunei, Bandar Seri Begawan, 1410, Brunei Darussalam.
J Colloid Interface Sci
January 2025
The Department of Medical Imaging, Guangzhou Key Laboratory of Molecular Functional Imaging and Artificial Intelligence for Major Brain Diseases, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Jinan University, Guangzhou 518037 China. Electronic address:
Microwave dynamic therapy (MWDT) destroy tumor cells using reactive oxygen species (ROS), but its effectiveness is limited by low ROS production and intracellular oxygen (O) availability. This study presents a novel strategy using manganese (II) ion (Mn) doped iron (Fe)-based metal-organic framework (Fe MOF) nanoparticles (NPs) to enhance both O generation and ROS production for improved MWDT. Incorporating Mn into Fe MOF narrows the bandgap from 0.
View Article and Find Full Text PDFACS Nano
January 2025
National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230026, China.
Metal ions are indispensable to life, as they can serve as essential enzyme cofactors to drive fundamental biochemical reactions, yet paradoxically, excess is highly toxic. Higher-order cells have evolved functionally distinct organelles that separate and coordinate sophisticated biochemical processes to maintain cellular homeostasis upon metal ion stimuli. Here, we uncover the remodeling of subcellular architecture and organellar interactome in yeast initiated by several metal ion stimulations, relying on near-native three-dimensional imaging, cryo-soft X-ray tomography.
View Article and Find Full Text PDFJ Food Sci Technol
January 2025
Grain Science and Technology Division, Defence Food Research Laboratory, Mysore, Karnataka 570011 India.
This study aimed to compare thirteen different varieties of hyacinth beans analyzedfor their nutritional and antinutritional constituents. The study classified HA-3, HA-4, and Kadale Avare as Lignosus varieties, while the remaining varieties Arka, Pusa, CO, and NS, were classified as Typicus. The protein content ranged from 19.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!