The increase in intracellular reactive oxygen and nitrogen species plays a key role in ultraviolet B (UV-B)-induced inflammatory responses in the human skin. Piperine exhibits many pharmacological benefits. In the present study, the photoprotective effects and the possible underlying mechanisms of the anti-inflammatory effects of piperine on UV-B-irradiated keratinocytes were investigated. Piperine exerted strong, direct scavenging effects on DPPH radicals and exhibited free radical scavenging capabilities as demonstrated by the DCFH-DA and Griess assays. Consistent with these results, 10, 20, and 40 μM piperine pretreatments attenuated UV-B irradiation-induced keratinocyte cytotoxicity as reported by the resazurin assay. The highest concentration of piperine inhibited UV-B irradiation-induced cell apoptosis, as revealed by Hoechst 33342 staining. Moreover, we demonstrated the anti-inflammatory effects of piperine using western blot analysis, real-time PCR, and ELISA. Pretreatment with piperine suppressed the activation of phosphorylated p38, JNK, and AP-1 as well as the levels of COX-2/PGE and iNOS synthesis, while UV-B-irradiated cells triggered the induction of these signaling molecules. These results indicated that the inhibition of these inflammatory signaling pathways might play a key role in the regulation of the anti-inflammatory effects of piperine. In addition, piperine showed stronger anti-inflammatory effects than celecoxib which served as a positive control at the same concentration. All these results suggested that the anti-inflammatory properties of piperine protected keratinocytes from UV-B-induced damage, which might be due to its antioxidant properties. Therefore, piperine may be an effective therapeutic candidate compound for the treatment of UV irradiation-induced skin inflammation.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.lfs.2020.118607DOI Listing

Publication Analysis

Top Keywords

anti-inflammatory effects
20
effects piperine
16
piperine
12
piperine uv-b-irradiated
8
key role
8
uv-b irradiation-induced
8
properties piperine
8
effects
7
anti-inflammatory
5
antioxidant anti-inflammatory
4

Similar Publications

Pharmaceuticals, including non-steroidal anti-inflammatory drugs (NSAIDs) like ibuprofen (IBU) and naproxen (NPX), are widely used for medical purposes but have also become prevalent environmental contaminants. However, there is limited understanding of their effects on aquatic organisms, especially regarding multigenerational and mixture exposures. This study aimed to evaluate the toxicological impacts of ibuprofen and naproxen, individually and in combination, on three generations of Daphnia carinata, a freshwater organism.

View Article and Find Full Text PDF

Chondrocyte senescence is an important pathogenic factor causing osteoarthritis (OA) progression through persistently producing pro-inflammatory factors. Mesenchymal stem cells-derived small extracellular vesicles (MSC-sEVs) have shown anti-inflammatory effects in OA models, while persistent existence of senescent chondrocytes still promotes cartilage destruction. Therefore, improving the targeted elimination ability on senescent chondrocytes is required to facilitate the translation of MSC-sEVs in OA treatment.

View Article and Find Full Text PDF

Chrysoeriol: a natural RANKL inhibitor targeting osteoclastogenesis and ROS regulation for osteoporosis therapy.

Naunyn Schmiedebergs Arch Pharmacol

January 2025

The Key Laboratory of Spine and Spinal Cord Disease of Jiangxi Province, Nanchang, 330006, China.

Chrysoeriol (CHE) is a naturally occurring compound with established anti-inflammatory and anti-tumor effects. This study examines its potential role in regulating osteoclast differentiation and activity, both of which are crucial for bone remodeling. Computational docking revealed high binding affinity between CHE and RANKL, specifically at the Lys-181 residue of RANKL, suggesting potential inhibitory interactions on osteoclastogenesis.

View Article and Find Full Text PDF

Periodontitis, a common chronic inflammatory condition caused by bacteria, leads to loss of attachment, resorption of alveolar bone, and ultimately tooth loss. Therefore, reducing bacterial load and fostering alveolar bone regeneration are essential components in the treatment of periodontitis. In this study, we prepared smaller-sized Ag-Metal Organic Frameworks (Ag@MOF) and loaded with sodium alginate (Alg) hydrogel for periodontitis treatment.

View Article and Find Full Text PDF

The intestinal barrier function is a critical defense mechanism in the human body, serving as both the primary target and initiating organ in cases of sepsis. Preserving the integrity of this barrier is essential for preventing complications and diseases, including sepsis and mortality. Despite this importance, the impact of resveratrol on intestinal barrier function remains unclear.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!