Memory antigen-specific CD4+ T cells against Chlamydia trachomatis are necessary for protection against secondary genital tract infection. While it is known that naïve antigen-specific CD4+ T cells can traffic to the genital tract in an antigen-specific manner, these T cells are not protective during primary infection. Here, we sought to compare the differences between memory and naïve antigen-specific CD4+ T cells in the same mouse following secondary infection using transgenic CD4+ T cells (NR1 T cells). Using RNA sequencing, we found that there were subtle but distinct differences between these two T cell populations. Naïve NR1 T cells significantly upregulated cell cycle genes and were more proliferative than memory NR1 T cells in the draining lymph node. In contrast, memory NR1 T cells were more activated than naïve NR1 T cells and were enriched in the genital tract. Together, our data provide insight into the differences between memory and naïve antigen-specific CD4+ T cells during C. trachomatis infection.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7580951 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0240670 | PLOS |
BMC Microbiol
January 2025
School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, China.
Mycobacterium tuberculosis (M. tuberculosis) and Mycobacterium abscessus (M. abscessus) are important pathogens that can cause lung diseases.
View Article and Find Full Text PDFBMC Infect Dis
January 2025
Department of Health Promotion and Health Behavior, Institute of Public Health, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia.
Background: Tuberculosis (TB), caused by Mycobacterium tuberculosis (MTB), remains a global health crisis, especially in sub-Saharan Africa, where high human immune virus (HIV) prevalence exacerbates the problem. The co-infection of TB and HIV creates a deadly combination, increasing susceptibility and complicating disease progression and treatment. Ethiopia, classified as a high-burden country, faces significant challenges despite efforts to reduce co-infection rates.
View Article and Find Full Text PDFAIDS Behav
January 2025
Department of Medicine, University of Alabama at Birmingham, 845 19th Street South, Bevill Biomedical Research Building, Room 256D, Birmingham, AL, 35294-2170, USA.
Antiretroviral therapy (ART) use and HIV suppression among people living with HIV (PLHIV) are critical for HIV control and prevention. Extreme restrictions on movement early during the COVID-19 pandemic in Uganda may have impeded the ability to initiate and sustain access to and use of ART. From our stepped-wedge cluster-randomized trial of an integrated PrEP and ART intervention for HIV-serodifferent couples at 12 ART clinics in Uganda, we identified participants who enrolled and had a 6-month post-ART initiation viral load measured before the beginning of the first COVID-19 lockdown (Period 1), participants whose enrollment and 6-month viral load measurement straddled pre-COVID and COVID lockdown times (Period 2), and participants whose enrollment and 6-month viral load were quantified entirely during COVID-19 (Period 3).
View Article and Find Full Text PDFAnn Hematol
January 2025
Division of Hematopoietic Disease Control, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan.
The prognosis of adult T-cell leukemia/lymphoma (ATL) with primary central nervous system (CNS) involvement has been unclear since the advent of new therapies. Recently, we have shown that flow cytometric CD7/CADM1 analysis of CD4 + cells (HAS-Flow) is useful to detect ATL cells that are not morphologically diagnosed as ATL cells. We investigated the role of CNS involvement in ATL using cytology and HAS-Flow by analyzing cerebrospinal fluid (CSF) from 73 aggressive ATL cases.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Emergency Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, People's Republic of China.
This research aimed to identify novel indicators for sepsis by analyzing RNA sequencing data from peripheral blood samples obtained from sepsis patients (n = 23) and healthy controls (n = 10). 5148 differentially expressed genes were identified using the DESeq2 technique and 5636 differentially expressed genes were identified by the limma method(|Log2 Fold Change|≥2, FDR < 0.05).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!