The development of novel water oxidation catalysts is important in the context of renewable fuels production. Ligand design is one of the key tools to improve the activity and stability of molecular catalysts. The establishment of ligand design rules can facilitate the development of improved molecular catalysts. In this paper it is shown that chemical oxidants can be used to probe oxygen evolution activity for nickel-based systems, and trends are reported that can improve future ligand design. Interestingly, different ligand effects were observed in comparison to other first-row transition metal complexes. For example, nickel complexes with secondary amine donors were more active than with tertiary amine donors, which is the opposite for iron complexes. The incorporation of imine donor groups in a cyclam ligand resulted in the fastest and most durable nickel catalyst of our series, achieving oxygen evolution turnover numbers up to 380 and turnover frequencies up to 68 min in a pH 5.0 acetate buffer using Oxone as oxidant. Initial kinetic experiments with this catalyst revealed a first order in chemical oxidant and a half order in catalyst. This implies a rate-determining oxidation step from a dimeric species that needs to break up to generate the active catalyst. These findings lay the foundation for the rational design of molecular nickel catalysts for water oxidation and highlight that catalyst design rules are not generally applicable for different metals.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7756549 | PMC |
http://dx.doi.org/10.1002/cssc.202002164 | DOI Listing |
Environ Health Insights
January 2025
Department of Environmental Health, College of Medicine and Health Sciences, Injibara University, Injibara, Ethiopia.
Background: Wastewater treatment is crucial to protecting public health and the environment by removing Biohazards. In Ethiopia, however, significant research gaps limit progress, especially regarding the efficiency of Biohazard removal in existing treatment facilities. This review evaluates the effectiveness of current treatment methods for Biohazard removal, highlights key challenges, and offers recommendations.
View Article and Find Full Text PDFFood Chem (Oxf)
June 2025
Dept. of Biomedical and Biotechnological Sciences, University of Catania.
In the last few years, many efforts have been devoted to the recovery and valorization of olive oil by-products because of their potentially high biological value. The olive mill wastewater (OMWW), a dark-green brown colored liquid that mainly consists of fruit vegetation water, is particularly exploited in this regard for its great content in phenolic compounds with strong antioxidant properties. In our previous work, we produced different OMWW fractions enriched in hydroxytyrosol- and hydroxytyrosol/oleuropein (i.
View Article and Find Full Text PDFHeliyon
January 2025
Sakarya University, Faculty of Science, Biology Department, 54187, Serdivan, Sakarya, Turkiye.
Molybdate, an oxidized form of molybdenum, facilitates molybdenum to be taken into cell, and thus to be included as a cofactor in the structure of enzymes necessary to ensure homeostasis. Although this compound provides the catalysis and electron transport of many biochemical reactions, it causes serious health problems in animals at high concentrations. For this reason, its recovery of water resources is one of the main subjects of scientific studies called bioremediaiton.
View Article and Find Full Text PDFHeliyon
January 2025
Environmental Health Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran.
In this study, a Cu@Ag core-shell was synthesized using a co-precipitation method. To create a new electrochemical sensor, a Cu@Ag core-shell with conductive polymers such as polyalizarin yellow R (PA) and Nafion (Nf) was immobilized on the surface of a glassy carbon electrode (Cu@Ag-Nf/PA/GCE). X-ray diffraction analysis (XRD), energy dispersive X-ray analysis (EDX), transmission electron microscopy (TEM), and Fourier Transform Infrared Spectroscopy (FTIR) techniques were employed to characterize the Cu@Ag-Nf/PA/GCE.
View Article and Find Full Text PDF3 Biotech
February 2025
Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104 India.
This study is aimed at evaluating the neurotoxic effects of chronic exposure of sodium fluoride (NaF) in developmental stages in rat using prenatal models. NaF (100 ppm, orally) dosing via drinking water was given to pregnant rats in disease group. In the treatment groups, Metformin & Dehydrozingerone (DHZ) (200 mg/kg) were administered orally along with NaF, and the dosing was continued throughout the gestation and lactation periods to the pups until the end of experiment.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!