Controlled deposition of 2D multilayered nanomaterials onto different electrodes to design a highly sensitive biosensing platform utilizing their active inherent electrochemistry is extremely challenging. Herein, a green, facile, and cost-effective one-pot deposition mechanism of 2D MXene-TiCT nanosheets (MXNSs) onto conductive electrodes within few minutes via electroplating (termed electroMXenition) is reported for the first time. The redox reaction in the colloidal MXNS solution under the effect of a constant applied potential generates an electric field, which drives the nanoparticles toward a specific electrode interface such that they are cathodically electroplated. A task-specific ionic liquid, that is, 4-amino-1-(4-formyl-benzyl) pyridinium bromide (AFBPB), is exploited as a multiplex host arena for the substantial immobilization of MXNSs and covalent binding of antibodies. A miniaturized, single-masked gold dual interdigitated microelectrode (DIDμE) is microfabricated and presented by investigating the benefit of AFBPB coated on MXNSs. The resulting MXNSs-AFBPB-film-modified DIDμE biosensor exhibited a 7× higher redox current than bare electrodes owing to the uniform deposition. Using Apo-A1 and NMP 22 as model bladder cancer analytes, this newly developed dual immunosensor demonstrated precise and large linear ranges over five orders of significance with limit of detection values as low as 0.3 and 0.7 pg mL, respectively.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/smll.202002517 | DOI Listing |
ACS Nano
January 2025
Nano Hybrid Technology Research Center, Korea Electrotechnology Research Institute (KERI), Changwon 51543, Republic of Korea.
Hydrogen-bond-driven 1D assembly of carbon nanotubes dispersed in organic solvents remains challenging owing to difficulties associated with achieving high oxidation levels and uniform dispersion. Here, we introduced a bioinspired wet-spinning method that utilizes highly oxidized single-walled carbon nanotubes dispersed in organic solvents without superacid or dispersants. By incorporating submicrometer-sized graphene oxide nanosheets, we facilitated the ejection of 1.
View Article and Find Full Text PDFAnalyst
January 2025
Jiangsu Key Laboratory for Carbon-based Functional Materials and Devices, Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu Province 215123, China.
The choices of matrices and protocols for sample deposition are critical factors, which impact each other in the matrix-assisted laser desorption/ionization (MALDI) mass spectrometry imaging (MSI). Previous reports on MALDI MS matrices have only compared their performances in terms of their MS signal intensities and provided optical microphotos or MALDI MS images of sample spots but typically lacked quantitative evaluation. Therefore, there is an urgent need to develop a multivariate model to evaluate the performance of different combinations of matrices and sample protocols.
View Article and Find Full Text PDFAdv Mater
January 2025
Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China.
Commercialization of lithium-sulfur (Li-S) batteries is largely limited by polysulfide shuttling and sluggish kinetics. Herein, 2D nanochannel interlayer composed of alternatively-stacked porous silica nanosheets (PSN) and TiCT-MXene are developed. The 2D nanochannels with selective cation transport characteristics facilitate lithium ion rapid transport, while reject the translocation of polysulfide anions across the separator.
View Article and Find Full Text PDFSmall
January 2025
College of Ecology and Environment, Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, P. R. China.
Constructing heterojunctions between phase interfaces represents a crucial strategy for achieving excellent photocatalytic performance, but the absence of sufficient interface driving force and limited charge transfer pathway leads to unsatisfactory charge separation processes. Herein, a doping-engineering strategy is introduced to construct a In─N bond-bridged InS nanocluster modified S doped carbon nitride (CN) nanosheets Z-Scheme van der Waals (VDW) heterojunctions (InS/CNS) photocatalyst, and the preparation process just by one-step pyrolysis using the pre-coordination confinement method. Specifically, S atoms doping enhances the bond strength of In─N and forms high-quality interfacial In─N linkage which serves as the atomic-level interfacial "highway" for improving the interfacial electrons migration, decreasing the charge recombination probability.
View Article and Find Full Text PDFLangmuir
January 2025
School of Materials Science and Engineering, North China University of Water Resources and Electric Power, Zhengzhou 450045, China.
With the rapid development of modern industry, traditional lubricants often require a variety of additives to be used in conjunction with each other, which not only increases the cost but also causes a waste of resources. Therefore, the development of a lubricant additive with both a dyeing function and an antiwear and friction reduction performance can more effectively meet the industrial needs. Cerium sulfide (CeS), with its excellent photostability, weather resistance, thermal stability, and nontoxicity, shows great potential as an environmentally friendly pigment.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!