In Uzbekistan, Ephedra distachya L., E. equisetina Bunge, E. foliata Boiss. ex C. A. Mey., E. lomatolepis Schrenk, and E. strobilacea Bunge show species specificity for habitat environments and physical and chemical characteristics of habitat soils. Furthermore, the relationship between soil characteristics and ephedrine and pseudoephedrine contents was examined. E. distachya was found growing from 80 to 200 m above sea level (a.s.l) in the Plateau Ustyurt on the desert steppe of cliffs on soil having relatively higher loss on ignition (19.8-33.8%) and water-soluble cations (Ca, 5.14-133.13; Mg, 0.85-3.18; and Na, 2.27-8.33 mmol/100 g dry soil weight) than for other Ephedra habitats. E. strobilacea was found growing on the flat sandy Kyzylkum desert at 94 m a.s.l. and had habitat soil that was the driest with the lowest loss on ignition (2.9%) and highest Na (9.05 mmol/100 g dry soil weight) of all the Ephedra habitat soils. On dry steppe from 1054 to 1819 m a.s.l., E. foliata, E. lomatolepis, and E. equisetina formed not only a single community but also a complex community on constantly collapsing sandy gravel slope with relatively higher Ca (3.40-17.44 mmol/100 g dry soil weight) soil content. Notably, E. equisetina grew on the dry steppe of constantly collapsing sandy gravel slopes, in rocky areas, on sandy gravel floodplains of rivers, and on stable humus soil at the base of coniferous trees in a wide range of habitats from dry steppe to coniferous forest zones at altitudes ranging from 1392 to 1819 m a.s.l., as reflected in the greater variability than for other Ephedra habitats in the parameters of loss on ignition (1.4-34.8%), pH (7.1-9.6), NO (0.08-35.17 mmol/100 g dry soil weight), Ca (0.24-17.44 mmol/100 g dry soil weight), Mg (not detected-1.25 mmol/100 g dry soil weight), and Na (0.13-5.19 mmol/100 g dry soil weight). Ephedrine alkaloids were not detectable in E. strobilacea, E. foliata, and E. lomatolepis. Almost all E. distachya contained only pseudoephedrine (1.25-1.59% of dry weight, %DW), while E. equisetina contained from 1.31 to 2.05%DW ephedrine and from 1.29 to 2.80%DW pseudoephedrine. Ephedrine and pseudoephedrine in E. equisetina showed a statistically significant negative correlation with soil Cl and Mg, respectively.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11418-020-01460-3DOI Listing

Publication Analysis

Top Keywords

dry soil
28
soil weight
28
soil
13
ephedra habitats
12
loss ignition
12
dry steppe
12
sandy gravel
12
dry
11
soil characteristics
8
habitat soils
8

Similar Publications

Stay-green (SG) and stem reserve mobilization (SRM) are two significant mutually exclusive traits, which contributes to grain-filling during drought and heat stress in wheat. The current research was conducted in a genome-wide association study (GWAS) panel consisting of 278 wheat genotypes of advanced breeding lines to find the markers linked with SG and SRM traits and also to screen the superior genotypes. SG and SRM traits, viz.

View Article and Find Full Text PDF

The conversion of water hyacinth into biochar offers a sustainable solution to mitigate its proliferation and enhances its potential as a soil amendment for agriculture. This study examined the physicochemical properties of water hyacinth biochar (WHBC) and its impact on soil fertility. Water hyacinth (Eichhornia crassipes) was pyrolyzed at 300 °C for 40 minute with restricted airflow (2-3 m/s), producing biochar with desirable properties and a yield of 44.

View Article and Find Full Text PDF

A constitutive model for coal gangue coarse-grained subgrade filler incorporating particle breakage.

Sci Rep

January 2025

Hunan Provincial Key Laboratory of Geotechnical Engineering for Stability Control and Health Monitoring, Hunan University of Science and Technology, Xiangtan, 411201, People's Republic of China.

The accumulation and discharge amount of coal gangue are substantial, occupying significant land resources over time. Utilizing coal gangue as subgrade filler can generate notable economic and social benefits. Coal gangue coarse-grained soil (CGSF) was used to conduct a series of large-scale vibration compaction tests and large-scale triaxial tests.

View Article and Find Full Text PDF

Codon bias, nucleotide selection, and genome size predict in situ bacterial growth rate and transcription in rewetted soil.

Proc Natl Acad Sci U S A

January 2025

Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94550.

In soils, the first rain after a prolonged dry period represents a major pulse event impacting soil microbial community function, yet we lack a full understanding of the genomic traits associated with the microbial response to rewetting. Genomic traits such as codon usage bias and genome size have been linked to bacterial growth in soils-however, often through measurements in culture. Here, we used metagenome-assembled genomes (MAGs) with O-water stable isotope probing and metatranscriptomics to track genomic traits associated with growth and transcription of soil microorganisms over one week following rewetting of a grassland soil.

View Article and Find Full Text PDF

Nitrogen fertilizer delivery inefficiencies limit crop productivity and contribute to environmental pollution. Herein, we developed Zn- and Fe-doped hydroxyapatite nanomaterials (ZnHAU, FeHAU) loaded with urea (∼26% N) through hydrogen bonding and metal-ligand interactions. The nanomaterials attach to the leaf epidermal cuticle and localize in the apoplast of leaf epidermal cells, triggering a slow N release at acidic conditions (pH 5.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!