Organic-inorganic hybrid perovskite solar cells (PSCs) has achieved the power conversion efficiency (PCE) of 25.2% in the last 10 years, and the PCE of inverted PSCs has reached >22%. The rapid enhancement has partly benefited from the employment of suitable hole transport layers. Especially, poly(3,4-ethenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) is one of the most widely used polymer hole transport materials in inverted PSCs, because of its high optical transparency in the visible region and low-temperature processing condition. However, the PCE and stability of PSCs based on pristine PEDOT:PSS are far from satisfactory, which are ascribed to low fitness between PEDOT:PSS and perovskite materials, in terms of work function, conductivity, film growth, and hydrophobicity. This paper summaries recent progress regarding to modifying/remedy the drawbacks of PEDOT:PSS to improve the PCE and stability. The systematically understanding of the mechanism of modified PEDOT:PSS and various characteristic methods are summarized here. This Review has the potential to guide the development of PSCs based on commercial PEDOT:PSS.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.0c13576 | DOI Listing |
J Phys Chem Lett
January 2025
School of Physics, Nankai University, Tianjin 300071, China.
CdZnTe (CZT) has garnered substantial attention due to its outstanding performance in room-temperature semiconductor radiation detectors, where carrier transport properties are critical for assessing the detector performance. However, due to the complexities of crystal growth, CZT is prone to defects that affect carrier lifetime and mobility. To investigate how defects affect nonequilibrium carrier transport, nonadiabatic molecular dynamics (NAMD) is employed to examine six types of intrinsic defects and their impact on electron-hole (e-h) recombination.
View Article and Find Full Text PDFSci Rep
January 2025
Institute of High Pressure Physics, PAS, Warsaw, Poland.
This study addresses the issue of effective carrier injection to quantum wells in laser diode structures. The nitride light emitting structures used in this study were fabricated by Metal-Organic Vapor Phase Epitaxy (MOVPE). We developed three distinct sets of samples, with varying quantum barrier thickness, different QWs indium composition and different position relative to the p- and n-sides of the structure.
View Article and Find Full Text PDFAdv Mater
January 2025
National & Local Joint Engineering Research Center for High-efficiency Display and Lighting Technology, Key Lab for Special Functional Materials of Ministry of Education, School of Nanoscience and Materials Engineering, Henan University, Kaifeng, 475004, China.
The poor efficiency and stability of blue Quantum Dot Light-Emitting diodes (QLED) hinders the practical applications of QLEDs full-color displays. Excessive electron injection, insufficient hole injection, and abundant defects on the surface of quantum dots (QD) are the main issues limiting the performance of blue devices. Herein, an in situ treatment with bipolar small molecule polydentate ligand-guanidine chloride (GACl) is proposed to simultaneously suppress excessive electron injection, patch surface defects of QDs and enhance hole injection.
View Article and Find Full Text PDFACS Nano
January 2025
Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, LIFM, School of Chemistry, IGCME, Sun Yat-Sen University, Guangzhou 510275, China.
Perovskite solar cells (PSCs) have emerged as low-cost photovoltaic representatives. Constructing three-dimensional (3D)/two-dimensional (2D) perovskite heterostructures has been shown to effectively enhance the efficiency and stability of PSCs. However, further enhancement of device performance is still largely limited by inferior conductivity of the 2D perovskite capping layer and its mismatched energy level with the 3D perovskite layer.
View Article and Find Full Text PDFSurv Ophthalmol
January 2025
Department of Ophthalmology, University of Pittsburgh, School of Medicine, Pittsburgh, Pennsylvania, United States. Electronic address:
Internal limiting membrane (ILM) peeling has been an acceptable step in vitrectomy surgeries for various retinal diseases such as macular hole, chronic macular edema following epiretinal membrane (ERM), and vitreoretinal traction. Despite all the benefits, this procedure has some side effects, which may lead to structural damage and functional vision loss. Light and dye toxicity may induce reversible and irreversible retina damage, which will be observed in postoperative optical coherence tomography scans.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!