Screening of phytochemicals as potent inhibitor of 3-chymotrypsin and papain-like proteases of SARS-CoV2: an in silico approach to combat COVID-19.

J Biomol Struct Dyn

Microbiology Laboratory, Bioinformatics Division, Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi, Bangladesh.

Published: March 2022

COVID-19 and its causative organism SARS-CoV2 that emerged from Wuhan city, China have paralyzed the world. With no clinically approved drugs, the global health system is struggling to find an effective treatment measure. At this crucial juncture, screening of plant-derived compounds may be an effective strategy to combat COVID-19. The present study investigated the binding affinity of phytocompounds with 3-Chymotrypsin-like (3CLpro) and Papain-like proteases (PLpro) of SARS-CoV2 using techniques. A total of 32 anti-protease phytocompounds were investigated for the binding affinity to the proteins. Docking was performed in Autodock Vina. Pharmacophore descriptors of best ligands were studied using LigandScout. Molecular dynamics (MD) simulation of apo-protein and ligand-bound complexes was carried out in YASARA software. The druglikeness properties of phytocompounds were studied using ADMETlab. Out of 32 phytochemicals, amentoflavone and gallocatechin gallate showed the best binding affinity to 3CLpro (-9.4 kcal/mol) and PLpro (-8.8 kcal/mol). Phytochemicals such as savinin, theaflavin-3,3-digallate, and kazinol-A also showed strong affinity. MD simulation revealed ligand-induced conformational changes in the protein with decreased surface area and higher stability. The RMSD/F of proteins and ligands showed stability of the protein suggesting the effective binding of the ligand in both the proteins. Both amentoflavone and gallocatechin gallate possess promising druglikeness property. The present study thus suggests that Amentoflavone and Gallocatechin gallate may be potential inhibitors of 3CLpro and PLpro proteins and effective drug candidates for SARS-CoV2. However, the findings of study need to be supported by studies to establish the exact mode of action.Communicated by Ramaswamy H. Sarma.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7594184PMC
http://dx.doi.org/10.1080/07391102.2020.1835729DOI Listing

Publication Analysis

Top Keywords

binding affinity
12
amentoflavone gallocatechin
12
gallocatechin gallate
12
papain-like proteases
8
combat covid-19
8
investigated binding
8
screening phytochemicals
4
phytochemicals potent
4
potent inhibitor
4
inhibitor 3-chymotrypsin
4

Similar Publications

Background: Breast cancer is a frequently diagnosed malignant disease and the primary cause of mortality among women with cancer worldwide. The therapy options are influenced by the molecular subtype due to the intricate nature of the condition, which consists of various subtypes. By focusing on the activation of receptors, Epidermal Growth Factor Receptor (EGFR) tyrosine kinase can be utilized as an effective drug target for therapeutic purposes of breast cancer.

View Article and Find Full Text PDF

The Circumsporozoite Protein (PfCSP) has been used in developing the RTS,S, and R21 malaria vaccines. However, genetic polymorphisms within compromise the effectiveness of the vaccine. Thus, it is essential to continuously assess the genetic diversity of , especially when deploying it across different geographical regions.

View Article and Find Full Text PDF

The study by Yang presents a comprehensive investigation into the therapeutic potential of curcumin for gastric cancer (GC). Using network pharmacology, the researchers identified 48 curcumin-related genes, 31 of which overlap with GC targets. Key genes, including , , , , , and , are linked to poor survival in GC patients.

View Article and Find Full Text PDF

Reliable in silico prediction of fragment binding modes remains a challenge in current drug design research. Due to their small size and generally low binding affinity, fragments can potentially interact with their target proteins in different ways. In the current study, we propose a workflow aimed at predicting favorable fragment binding sites and binding poses through multiple short molecular dynamics simulations.

View Article and Find Full Text PDF

A novel ROR1-targeting antibody-PROTAC conjugate promotes BRD4 degradation for solid tumor treatment.

Theranostics

January 2025

Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China.

Proteolysis Targeting Chimeras (PROTACs) are bifunctional compounds that have been extensively studied for their role in targeted protein degradation (TPD). The capacity to degrade validated or undruggable targets provides PROTACs with significant potency in cancer therapy. However, the clinical application of PROTACs is limited by their poor potency and unfavorable pharmacokinetic properties.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!