A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Adaptation, ancestral variation and gene flow in a 'Sky Island' Drosophila species. | LitMetric

Adaptation, ancestral variation and gene flow in a 'Sky Island' Drosophila species.

Mol Ecol

The Department of Molecular Biosciences, University of Kansas, Lawrence, KS, USA.

Published: January 2021

Over time, populations of species can expand, contract, fragment and become isolated, creating subpopulations that must adapt to local conditions. Understanding how species maintain variation after divergence as well as adapt to these changes in the face of gene flow is of great interest, especially as the current climate crisis has caused range shifts and frequent migrations for many species. Here, we characterize how a mycophageous fly species, Drosophila innubila, came to inhabit and adapt to its current range which includes mountain forests in south-western USA separated by large expanses of desert. Using population genomic data from more than 300 wild-caught individuals, we examine four populations to determine their population history in these mountain forests, looking for signatures of local adaptation. In this first extensive study, establishing D. innubila as a key genomic "Sky Island" model, we find D. innubila spread northwards during the previous glaciation period (30-100 KYA) and have recently expanded even further (0.2-2 KYA). D. innubila shows little evidence of population structure, consistent with a recent establishment and genetic variation maintained since before geographic stratification. We also find some signatures of recent selective sweeps in chorion proteins and population differentiation in antifungal immune genes suggesting differences in the environments to which flies are adapting. However, we find little support for long-term recurrent selection in these genes. In contrast, we find evidence of long-term recurrent positive selection in immune pathways such as the Toll signalling system and the Toll-regulated antimicrobial peptides.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7945764PMC
http://dx.doi.org/10.1111/mec.15701DOI Listing

Publication Analysis

Top Keywords

gene flow
8
mountain forests
8
long-term recurrent
8
species
5
adaptation ancestral
4
ancestral variation
4
variation gene
4
flow 'sky
4
'sky island'
4
island' drosophila
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!