Comparison of plant Cd accumulation from a Cd-contaminated soil amended with biochar produced from various feedstocks.

Environ Sci Pollut Res Int

Institute for Rural Engineering, National Agricultural and Food Research Organization (NARO), 2-1-6 Kannondai, Tsukuba, Ibaraki, 305-8609, Japan.

Published: March 2021

The bioavailability of cadmium (Cd) in agricultural soils is a significant health concern due to the potential risk of human exposure via foods grown in Cd-contaminated fields. Biochar has been known to have a highly porous structure and high pH, as well as containing various functional groups; as such, it can immobilize heavy metals. Although it has found that biochar amendment in Cd-contaminated agricultural soils could be effective in reducing Cd bioavailability in previous studies, differences in plant Cd accumulation from Cd-contaminated soils amended with biochars produced from various types of biomass have not been fully discussed yet; we aimed to address this shortcoming in the present work. The soil investigated was an acid soil (pH 5.1) and had an elevated concentration of Cd (total Cd: 3.3 mg kg-DW). Six kinds of biochar were produced, i.e., from woodchips (Japanese cedar [CE] and Japanese cypress [CY]), moso bamboo (MB), rice husk (RH), poultry manure (PM), and wastewater sludge (WS), at a pyrolysis temperature of 600 °C. Biochars were incorporated into the Cd-contaminated soil at 3% (w/w) and pot experiments using Brassica rapa var. perviridis were conducted for 28 days in a growth chamber. The Cd concentrations in the above-ground portion of the plants were significantly decreased as a result of the incorporation of all biochars compared to the unamended soil, with reduction ratios following the order PM (78%) > > WS (31%) ≈ RH (29%) ≈ MB (28%) ≈ CY (26%) > CE (19%). Among all biochar-amended soils, soil pH and shoot biomass were highest for those amended with PM-derived biochar. These results suggest that in Cd-contaminated soils, PM-derived biochar may offer significant potential in reducing plant Cd accumulation due to the immobilization of soil Cd and an effect of dilution resulting from enhanced plant shoot biomass.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11356-020-11249-2DOI Listing

Publication Analysis

Top Keywords

plant accumulation
12
accumulation cd-contaminated
8
cd-contaminated soil
8
biochar produced
8
agricultural soils
8
cd-contaminated soils
8
shoot biomass
8
pm-derived biochar
8
soil
7
cd-contaminated
6

Similar Publications

High cadmium (Cd) concentrations pose a threat to aquatic life globally. This study examined the efficiency of adding purslane (Portulaca oleracea L.) leaf powder (PLP) to Oreochromis niloticus diets on Cd's negative effects.

View Article and Find Full Text PDF

What Is Grazing Time? Insights from the Acoustic Signature of Goat Jaw Activity in Wooded Landscapes.

Sensors (Basel)

December 2024

Rangeland Service, Ministry of Agriculture and Food Security, P.O. Box 30, Rishon LeZion 5025001, Israel.

Acoustic monitoring facilitates the detailed study of herbivore grazing by generating a timeline of sound bursts associated with jaw movements (JMs) that perform bite or chew actions. The unclassified stream of JM events was used here in an observational study to explore the notion of "grazing time". Working with shepherded goat herds in a wooded landscape, a horn-based acoustic sensor with a vibration-type microphone was deployed on a volunteer animal along each of 12 foraging routes.

View Article and Find Full Text PDF

Background/objectives: Histamine intolerance is primarily caused by a deficiency in the diamine oxidase (DAO) enzyme at the intestinal level. The reduced histamine degradation in the gut leads to its accumulation in plasma, thereby causing multiple clinical manifestations, such as urticaria, diarrhea, headache, dyspnea, or tachycardia, among others. The dietary management of this food intolerance consists of the follow-up of a low-histamine diet, often combined with DAO supplementation.

View Article and Find Full Text PDF

Background/objectives: Type 2 diabetes mellitus (T2DM) is considered a serious risk to public health since its prevalence is rapidly increasing worldwide despite numerous therapeutics. Insulin resistance in T2DM contributes to chronic inflammation and other metabolic abnormalities that generate fat accumulation in the liver, eventually leading to the progression of metabolic dysfunction-associated fatty liver disease (MAFLD). Recently, the possibility that microbial-derived metabolites may alleviate MAFLD through enterohepatic circulation has emerged, but the underlying mechanism remains unclear.

View Article and Find Full Text PDF

Effects of Luteolin Treatment on Postharvest Quality and Antioxidant Capacity of Nanfeng Tangerines.

Foods

December 2024

Jiangxi Provincial Key Laboratory for Postharvest Storage and Preservation of Fruit and Vegetables, College of Agronomy, Jiangxi Agricultural University, Nanchang 330045, China.

Postharvest quality deterioration is a major factor affecting the economic value and marketing of Nanfeng tangerines. The objective of this study was to explore the effects of luteolin treatment on the postharvest quality and antioxidant capacity of Nanfeng tangerines. We applied 1 g/L and 3 g/L luteolin to fruit after harvest and evaluated the decay rate, postharvest quality, and antioxidant capacity during a 60-day storage period at room temperature.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!