Ultra-high-field 7-T MRI in multiple sclerosis and other demyelinating diseases: from pathology to clinical practice.

Eur Radiol Exp

Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy.

Published: October 2020

Magnetic resonance imaging (MRI) is essential for the early diagnosis of multiple sclerosis (MS), for investigating the disease pathophysiology, and for discriminating MS from other neurological diseases. Ultra-high-field strength (7-T) MRI provides a new tool for studying MS and other demyelinating diseases both in research and in clinical settings. We present an overview of 7-T MRI application in MS focusing on increased sensitivity and specificity for lesion detection and characterisation in the brain and spinal cord, central vein sign identification, and leptomeningeal enhancement detection. We also discuss the role of 7-T MRI in improving our understanding of MS pathophysiology with the aid of metabolic imaging. In addition, we present 7-T MRI applications in other demyelinating diseases. 7-T MRI allows better detection of the anatomical, pathological, and functional features of MS, thus improving our understanding of MS pathology in vivo. 7-T MRI also represents a potential tool for earlier and more accurate diagnosis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7578213PMC
http://dx.doi.org/10.1186/s41747-020-00186-xDOI Listing

Publication Analysis

Top Keywords

7-t mri
28
demyelinating diseases
12
mri
8
multiple sclerosis
8
improving understanding
8
7-t
6
ultra-high-field 7-t
4
mri multiple
4
sclerosis demyelinating
4
diseases
4

Similar Publications

The Effects of Moderate to High Static Magnetic Fields on Pancreatic Damage.

J Magn Reson Imaging

January 2025

High Magnetic Field Laboratory, CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China.

Background: Pancreatic damage is a common digestive system disease with no specific drugs. Static magnetic field (SMF), the key component of magnetic resonance imaging (MRI), has demonstrated prominent effects in various disease models.

Purpose: To study the effects of 0.

View Article and Find Full Text PDF

Background: Middle cerebral artery (MCA) stenosis affects lenticulostriate arteries (LSAs) that supply the basal ganglia. Increased spatial resolution and signal-to-noise ratio of 7 T could facilitate morphological imaging of very-small-diameter LSAs.

Purpose: To evaluate differences in morphological characteristics of LSA among different MCA stenoses.

View Article and Find Full Text PDF

Background: Rhythmic median nerve stimulation (MNS) at 10 Hz has been shown to cause a substantial reduction in tic frequency in individuals with Tourette syndrome. The mechanism of action is currently unknown but is hypothesized to involve entrainment of oscillations within the sensorimotor cortex.

Objective: We used functional magnetic resonance spectroscopy (fMRS) to explore the dynamic effects of MNS on neurometabolite concentrations.

View Article and Find Full Text PDF

Magnetic resonance imaging (MRI) is a cornerstone of non-invasive diagnostics and treatment monitoring, particularly for diseases of the central nervous system. Although 1.5- and 3 Tesla (T) field strengths remain the clinical standard, the advent of 7 T MRI represents a transformative step forward, offering superior spatial resolution, contrast, and sensitivity for visualizing neuroanatomy, metabolism, and function.

View Article and Find Full Text PDF

Improving quantification accuracy of a nuclear Overhauser enhancement signal at -1.6 ppm at 4.7 T using a machine learning approach.

Phys Med Biol

January 2025

Vanderbilt University Medical Center, 1161 21st Ave. S, Medical Center North, AAA-3112, Nashville, Tennessee, 37232-2102, UNITED STATES.

Objective: A new nuclear Overhauser enhancement (NOE)-mediated saturation transfer MRI signal at -1.6 ppm, potentially from choline phospholipids and termed NOE(-1.6), has been reported in biological tissues at high magnetic fields.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!