Magnetic resonance imaging (MRI) is essential for the early diagnosis of multiple sclerosis (MS), for investigating the disease pathophysiology, and for discriminating MS from other neurological diseases. Ultra-high-field strength (7-T) MRI provides a new tool for studying MS and other demyelinating diseases both in research and in clinical settings. We present an overview of 7-T MRI application in MS focusing on increased sensitivity and specificity for lesion detection and characterisation in the brain and spinal cord, central vein sign identification, and leptomeningeal enhancement detection. We also discuss the role of 7-T MRI in improving our understanding of MS pathophysiology with the aid of metabolic imaging. In addition, we present 7-T MRI applications in other demyelinating diseases. 7-T MRI allows better detection of the anatomical, pathological, and functional features of MS, thus improving our understanding of MS pathology in vivo. 7-T MRI also represents a potential tool for earlier and more accurate diagnosis.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7578213 | PMC |
http://dx.doi.org/10.1186/s41747-020-00186-x | DOI Listing |
J Magn Reson Imaging
January 2025
High Magnetic Field Laboratory, CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China.
Background: Pancreatic damage is a common digestive system disease with no specific drugs. Static magnetic field (SMF), the key component of magnetic resonance imaging (MRI), has demonstrated prominent effects in various disease models.
Purpose: To study the effects of 0.
J Magn Reson Imaging
January 2025
Department of Radiology, the First Medical Center, Chinese PLA General Hospital, Beijing, China.
Background: Middle cerebral artery (MCA) stenosis affects lenticulostriate arteries (LSAs) that supply the basal ganglia. Increased spatial resolution and signal-to-noise ratio of 7 T could facilitate morphological imaging of very-small-diameter LSAs.
Purpose: To evaluate differences in morphological characteristics of LSA among different MCA stenoses.
Brain Behav
January 2025
School of Psychology, University of Nottingham University Park, Nottingham, UK.
Background: Rhythmic median nerve stimulation (MNS) at 10 Hz has been shown to cause a substantial reduction in tic frequency in individuals with Tourette syndrome. The mechanism of action is currently unknown but is hypothesized to involve entrainment of oscillations within the sensorimotor cortex.
Objective: We used functional magnetic resonance spectroscopy (fMRS) to explore the dynamic effects of MNS on neurometabolite concentrations.
J Intern Med
January 2025
Department of Neuroradiology, Karolinska University Hospital, Stockholm, Sweden.
Magnetic resonance imaging (MRI) is a cornerstone of non-invasive diagnostics and treatment monitoring, particularly for diseases of the central nervous system. Although 1.5- and 3 Tesla (T) field strengths remain the clinical standard, the advent of 7 T MRI represents a transformative step forward, offering superior spatial resolution, contrast, and sensitivity for visualizing neuroanatomy, metabolism, and function.
View Article and Find Full Text PDFPhys Med Biol
January 2025
Vanderbilt University Medical Center, 1161 21st Ave. S, Medical Center North, AAA-3112, Nashville, Tennessee, 37232-2102, UNITED STATES.
Objective: A new nuclear Overhauser enhancement (NOE)-mediated saturation transfer MRI signal at -1.6 ppm, potentially from choline phospholipids and termed NOE(-1.6), has been reported in biological tissues at high magnetic fields.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!