3D cancer models are important therapeutic and biological discovery tools, yet formation of matrix-embedded multicellular spheroids prepared in high-throughput (HTP), and in a highly controlled manner, remains challenging. This is important to achieve robust and statistically relevant data. Here, we developed an enabling technology consisting of a bespoke drop-on-demand 3D bioprinter capable of HTP printing of 96-well plates of spheroids. 3D multicellular spheroids are embedded inside a hydrogel matrix with precise control over size and cell number, with the intra-experiment variability of embedded spheroid diameter coefficient of variation being between 4.2% and 8.7%. Application of 3D bioprinting HTP drug screening was demonstrated with doxorubicin. Measurements of IC values showed sensitivity to spheroid size, embedding, and how spheroids conform to the embedding, revealing parameters shaping biological responses in these models. Our study demonstrates the potential of 3D bioprinting as a robust HTP platform to screen biological and therapeutic parameters.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7567958 | PMC |
http://dx.doi.org/10.1016/j.isci.2020.101621 | DOI Listing |
J Immunother Cancer
January 2025
Cellular Immunotherapy Research Unit, Chulalongkorn University, Bangkok, Thailand
Background: B7 homolog 3 (B7-H3), an overexpressed antigen across multiple solid cancers, represents a promising target for CAR T cell therapy. This study investigated the expression of B7-H3 across various solid tumors and developed novel monoclonal antibodies (mAbs) targeting B7-H3 for CAR T cell therapy.
Methods: Expression of B7-H3 across various solid tumors was evaluated using RNA-seq data from TCGA, TARGET, and GTEx datasets and by flow cytometry staining.
Int J Mol Sci
January 2025
Department of Electrical and Computer Engineering, College of Electrical and Computer Engineering, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan.
Bisphenol A (BPA) is a prevalent environmental contaminant found in plastics and known for its endocrine-disrupting properties, posing risks to both human health and the environment. Despite its widespread presence, the impact of BPA on papillary thyroid cancer (PTC) progression, especially under realistic environmental conditions, is not well understood. This study examined the effects of BPA on PTC using a 3D thyroid papillary tumor spheroid model, which better mimicked the complex interactions within human tissues compared to traditional 2D models.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Department of Biology, Faculty of Science, University of Zagreb, Horvatovac 102, 10000 Zagreb, Croatia.
The role of the plasminogen activation system is to regulate the activity of the extracellular protease plasmin. It comprises the urokinase plasminogen activator (uPA), a specific extracellular protease which activates plasminogen, its inhibitor PAI1, and the urokinase plasminogen activator receptor, uPAR, which localizes the urokinase activity. The plasminogen activation system is involved in tissue remodeling through extracellular matrix degradation, and therefore participates in numerous physiological and pathological processes, which make it a potential biomarker.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
AIST-INDIA DAILAB, National Institute of Advanced Industrial Science & Technology (AIST), Central 4-1, Tsukuba 305-8565, Japan.
The molecular link between stress and carcinogenesis and the positive outcomes of stress intervention in cancer therapy have recently been well documented. Cancer stem cells (CSCs) facilitate cancer malignancy, drug resistance, and relapse and, hence, have emerged as a new therapeutic target. Here, we aimed to investigate the effect of three previously described antistress compounds (triethylene glycol, TEG; Withanone, Wi-N, and Withaferin A, Wi-A) on the stemness and differentiation characteristics of cancer cells.
View Article and Find Full Text PDFMedicina (Kaunas)
January 2025
Department of Periodontics, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea.
Insulin-like growth factor-1 (IGF-1) plays a vital role in various cellular processes, including those involving stem cells. This study evaluated the effects of IGF-1 on cell survival, osteogenic differentiation, and mRNA expression in gingiva-derived mesenchymal stem cell spheroids. Using concave microwells, spheroids were generated in the presence of IGF-1 at concentrations of 0, 10, and 100 ng/mL.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!