Aims: Preventing mitochondrial dysfunction and enhancing mitochondrial health and biogenesis is a crucial therapeutic approach to ameliorate injury following acute myocardial infarction. Although the antioxidant role of melatonin against ischemia/reperfusion injury has been reported, the exact mechanism of protection, , remains poorly understood. This study aims to identify and elaborate upon mechanism of melatonin protection of rat cardiac mitochondria against acute myocardial infarction.
Main Methods: Rats were pre-treated with melatonin (10 mg/kg body weight (b.w.); intraperitoneally, i.p.) before isoproterenol bitartrate (ISO) administration (25 mg/kg body weight (b.w.) subcutaneously,s.c.) and their effect on rat heart mitochondrial structure and function was studied. Biochemical changes in activity of biomarkers of oxidative stress, antioxidant enzymes as well as Krebs' cycle enzymes were analyzed. Gene expression studies and Isothermal titration calorimetric studies with pure catalase and ISO were also carried out.
Key Findings: Melatonin was shown to reduce ISO induced oxidative stress, by stimulating superoxide dismutase activity and removing the inhibition of Krebs' cycle enzymes. Herein we report for the first time in rat model that melatonin activates the SIRT1-PGC-1α-SIRT3 signaling pathways after ISO administration, which ultimately induces mitochondrial biogenesis. Melatonin exhibited significant protection of mitochondrial architecture and topology along with increased calcium ion permeability and reactive oxygen species (ROS) generation induced by ISO. Isothermal calorimetric studies revealed that melatonin binds to ISO molecules and sequesters them from the reaction thereby limiting their interaction with catalase along with occupying the binding sites of catalase themselves.
Significance: Activation of SIRT1-PGC-1α-SIRT3 pathway by melatonin along with its biophysical properties prevents ISO induced mitochondrial injury in rat heart.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7567935 | PMC |
http://dx.doi.org/10.1016/j.heliyon.2020.e05159 | DOI Listing |
In Vitro Cell Dev Biol Anim
January 2025
Department of Critical Care Medicine, The Qujing NO.1 People's Hospital, Qujing, 655000, Yunnan, China.
Melatonin (MEL), functioning as a circulating hormone, is important for the regulation of ferroptosis in different health scenarios and acts as a crucial antioxidant in cardiovascular diseases. However, its specific function in ferroptosis related to myocardial ischemia-reperfusion injury (MIRI) remains to be fully elucidated. In our research, we utilized a rat model of MIRI induced by coronary artery ligation, along with a cell model subjected to hypoxia/reoxygenation (H/R).
View Article and Find Full Text PDFJ Addict Dis
January 2025
Departments of Anesthesiology and Perioperative Medicine and Pharmacology, Penn State College of Medicine, Hershey, PA, USA.
Opioid use disorder (OUD) is associated with a reduction in brain white matter, affecting critical areas involved in decision-making, impulse control, and reward processing. The FDA has approved several drugs and natural compounds that enhance myelination, targeting oligodendrocyte progenitor cells (OPCs), directly enhancing oligodendrocyte (OL) function, or acting as cofactors for myelin production. This retrospective case study aimed to assess whether current clinical evidence supports the use of myelin-enhancing agents to promote remission in OUD.
View Article and Find Full Text PDFCancer Cell Int
January 2025
School of Medicine, Kashan University of Medical Sciences, Kashan, Iran.
This narrative review explores the link between breast cancer and night shift work in nurses, focusing on genetic and epigenetic factors. Breast cancer disproportionately affects women globally, and night shift work is increasingly recognized as a potential risk factor. Nurses who work consecutive overnight shifts face elevated risks due to disruptions in their circadian rhythms.
View Article and Find Full Text PDFPediatr Res
January 2025
Institute for Women's Health, University College London, WC1E 6HX, 74 Huntley Street, London, WC1E 6HX, UK.
Front Pharmacol
January 2025
Department of Pharmacology, Faculty of Medicine, Erzincan Binali Yildirim University, Erzincan, Türkiye.
Aim: The current study aimed to investigate the protective effects of adenosine triphosphate (ATP), metyrosine, and melatonin on possible methylphenidate cardiotoxicity in rats using biochemical and histopathological methods.
Methods: Thirty rats were separated into five groups: healthy (HG), methylphenidate (MP), ATP + methylphenidate (ATMP), metyrosine + methylphenidate (MSMP), and melatonin + methylphenidate (MLMP). ATP (5 mg/kg) was given intraperitoneally once daily, metyrosine (50 mg/kg) orally twice daily, and melatonin (10 mg/kg) orally once daily.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!