Transcriptome analysis of reveals molecular signature of saccharide impact on acarbose biosynthesis.

3 Biotech

The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, 310014 People's Republic of China.

Published: November 2020

Different carbon sources lead to differential acarbose production in . To uncover the underlying differentiation in the context of genes and pathways, we performed transcriptome sequencing of ZJB-03852 grown on different saccharides, such as glucose, maltose, or the saccharide complex consisting of glucose plus maltose. The differentially expressed genes were classified into GO (gene ontology) terms and KEGG (Kyoto Encyclopedia of Genes and Genomes) pathways for functional annotations. Key enriched modules were uncovered. Our data revealed that both maltose and its complex with glucose gave improved acarbose titer. Sugar transportation, cytochrome oxidase, protein synthesis and amino acid metabolism modules were enriched under the saccharide complex condition, while ferritin metabolism gene expressions were enriched in the glucose medium. Our results provided the foundation for uncovering the mechanism of carbon source on acarbose production in .

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7550541PMC
http://dx.doi.org/10.1007/s13205-020-02466-0DOI Listing

Publication Analysis

Top Keywords

acarbose production
8
glucose maltose
8
saccharide complex
8
transcriptome analysis
4
analysis reveals
4
reveals molecular
4
molecular signature
4
signature saccharide
4
saccharide impact
4
acarbose
4

Similar Publications

Background: The lesser grain borer, Rhyzopertha dominica, is a serious stored-products pest mainly controlled by insecticides. Spinosad, an environmentally friendly biological insecticide with low mammalian toxicity, is considered a suitable candidate for R. dominica management.

View Article and Find Full Text PDF

A novel diphenyl-anthraquinone compound, cassuquinone A, was isolated from the rhizomes of Zingiber cassumunar. Structural elucidation was accomplished using detailed NMR and HRMS-ESI  techniques, revealing a symmetrical anthraquinone core with methoxylated aromatic rings. Cassuquinone A exhibited potent α-glucosidase inhibitory activity with an IC₅₀ of 11.

View Article and Find Full Text PDF

2-Acylpyrrole-based alkaloids from the leaves of Sauropus spatulifolius and their α-glucosidase inhibitory activities.

Bioorg Chem

January 2025

Department of Natural Medicine, School of Pharmacy, Fudan University, Shanghai 201203, People's Republic of China; Institutes of Integrative Medicine, Fudan University, Shanghai 201203, People's Republic of China. Electronic address:

Pyrrole alkaloids are a class of natural products with intriguing structures and promising biological actives. Within the Sauropus plants, these alkaloids are mainly present in Sauropus spatulifolius. An investigation of the leaves of S.

View Article and Find Full Text PDF

Biowaste produced in urban parks is composed of large masses of organic matter that is only occasionally used economically. In this work, extracts of six plants widely distributed in urban parks in Central Europe (, , , , , and ), prepared using 10 % and 50 % ethanol, were screened for their antidiabetic and related properties. HPLC and UV-Vis analysis revealed the presence of caffeic acid, quercetin, luteolin, and apigenin derivatives.

View Article and Find Full Text PDF

A new modified-release oral formulation combines acarbose and orlistat (MR-OA) to enhance efficacy and reduce adverse effects through controlled drug release. This study aims to compare the pharmacodynamic properties of the orlistat component of MR-OA (MR-O) with a conventional orlistat product, Xenical (Conv-O), analyzing the percentage of fecal fat excretion. In addition, the pharmacokinetic properties of the complete formulation, MR-OA, were compared with Conv-O.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!