Geckos cling best to, and prefer to use, rough surfaces.

Front Zool

College of Science and Engineering, James Cook University, Townsville, QLD 4810 Australia.

Published: October 2020

Background: Fitness is strongly related to locomotor performance, which can determine success in foraging, mating, and other critical activities. Locomotor performance on different substrates is likely to require different abilities, so we expect alignment between species' locomotor performance and the habitats they use in nature. In addition, we expect behaviour to enhance performance, such that animals will use substrates on which they perform well.

Methods: We examined the associations between habitat selection and performance in three species of geckos, including two specialists, (one arboreal, and one saxicolous), and one generalist species, which used both rocks and trees. First, we described their microhabitat use in nature (tree and rock type) for these species, examined the surface roughnesses they encountered, and selected materials with comparable surface microtopographies (roughness measured as peak-to-valley heights) to use as substrates in lab experiments quantifying behavioural substrate preferences and clinging performance.

Results: The three species occupied different ecological niches and used different microhabitats in nature, and the two specialist species used a narrower range of surface roughnesses compared to the generalist. In the lab, geckos preferred substrates (coarse sandpaper) with roughness characteristics similar to substrates they use in nature. Further, all three species exhibited greater clinging performance on preferred (coarse sandpaper) substrates, although the generalist used fine substrates in nature and had good performance capabilities on fine substrates as well.

Conclusion: We found a relationship between habitat use and performance, such that geckos selected microhabitats on which their performance was high. In addition, our findings highlight the extensive variation in surface roughnesses that occur in nature, both among and within microhabitats.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7566132PMC
http://dx.doi.org/10.1186/s12983-020-00374-wDOI Listing

Publication Analysis

Top Keywords

locomotor performance
12
three species
12
surface roughnesses
12
performance
9
substrates
8
coarse sandpaper
8
substrates nature
8
fine substrates
8
nature
6
species
6

Similar Publications

Coelurosauria, including modern birds, represents a successful group of theropod dinosaurs that established a high taxonomic diversity and significant morphological modifications. In the evolutionary history of this group, a specialized foot morphology, the arctometatarsus, evolved independently in several lineages and has been considered an adaptation for cursoriality. While its functional significance has been extensively studied, the temporal pattern of this parallel evolution, as well as its origin and influencing factors, remains largely unresolved.

View Article and Find Full Text PDF

Motion-less depth-selective optogenetic probe using tapered fiber and an electrically tuneable liquid crystal steering element.

Biomed Opt Express

January 2025

Center for Optics, Photonics and Lasers, Department of Physics, Engineering Physics and Optics, Université Laval, 2375 Rue de la Terrasse, Québec, Québec G1V 0A6, Canada.

A miniature electrically tuneable liquid crystal component is used to steer light from -1° to +1° and then to inject into a simple tapered fiber. This allows the generation of various propagation modes, their leakage, and selective illumination of the surrounding medium at different depth levels without using mechanical movements nor deformation. The performance of the device is characterized in a reference fluorescence medium (Rhodamine 6G) as well as in a mouse brain (medullary reticular formation and mesencephalic locomotor regions) during in-vivo experiments as a proof of concept.

View Article and Find Full Text PDF

Reconstructing dinosaur locomotion.

Biol Lett

January 2025

School of Biological and Environmental Sciences, Liverpool John Moores University, Liverpool, UK.

Dinosaur locomotor biomechanics are of major interest. Locomotion of an animal affects many, if not most, aspects of life reconstruction, including behaviour, performance, ecology and appearance. Yet locomotion is one aspect of non-avian dinosaurs that we cannot directly observe.

View Article and Find Full Text PDF

Amphibians are among the most threatened vertebrate taxa globally. Their global decline necessitates effective conservation actions to bolster populations across both the larval and adult stages. Constructing man-made ponds is one action proven to enhance reproduction in pond-breeding amphibians.

View Article and Find Full Text PDF

The study aimed to assess the feasibility and potential efficacy of a non-motor intervention utilizing motor imagery (MI) and transcranial direct current stimulation (tDCS) to enhance motor function. The research involved a double-blind, randomized, controlled trial with three groups: MIActive, MISham, and Control. Participants engaged in a cognitively demanding obstacle course, with time and prefrontal activation (ΔO2Hb and ΔHHb) measured across three-time points (Baseline, Post-test, 1-week follow-up).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!