Background: Femtosecond laser-assisted in situ keratomileusis (LASIK) has proven to be an efficacious, predictable, and safe procedure for the correction of refractive errors. We examined the early tear protein changes of patients undergoing LASIK surgery in order to better understand the mechanisms and proteins related to laser corneal surgery and initial recovery.
Methods: Corneal flaps were created with Ziemer FEMTO LDV Z6 I femtosecond laser and stroma was ablated using Wavelight EX500 excimer laser. Tear samples were collected preoperatively as well as 1.5 h and 1 month after LASIK treatment using glass microcapillary tubes. Relative quantification of tear proteins was performed with sequential window acquisition of all theoretical fragment ion spectra mass spectrometry (SWATH-MS).
Results: SWATH-MS revealed that 158 proteins had altered expression levels 1.5 h after the operation. Two-thirds of these proteins, mostly connected to migration and inflammation response, returned to preoperative levels within the first postoperative month. The other proteins, which did not return to baseline levels, included proteins connected to for example epithelial barrier function. We also identified several proteins, which correlated with surgical variables, such as the amount of correction, flap thickness and flap diameter.
Conclusions: The present study showed that an uneventful femtosecond LASIK refractive surgery induced a significant immune cell migration and inflammation-associated changes in tear proteomics profile quickly after the operation, but the expression of most proteins recovered almost completely to the preoperative levels within the first month. The individual proteins identified in our study are potential targets for the follow-up and modification of LASIK-induced biochemical processes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7574433 | PMC |
http://dx.doi.org/10.1186/s12014-020-09303-9 | DOI Listing |
Environ Sci Technol
January 2025
State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China.
Pyrogenic carbons (PCs), with varying structures depending on the materials and thermal treatment conditions, have been extensively used to enhance anaerobic digestion by mediating electron transfer. However, the underlying mechanism has yet to be explored. Herein, the redirection and enhancement of the direct interspecies electron transfer (DIET) pathway were evidenced, along with the upregulated electrochemical properties and structural proteins in the methanogenic consortia.
View Article and Find Full Text PDFMicrob Biotechnol
January 2025
Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, Jülich, Germany.
Glucose is the most abundant monosaccharide and a principal substrate in biotechnological production processes. In Pseudomonas, this sugar is either imported directly into the cytosol or first oxidised to gluconate in the periplasm. While gluconate is taken up via a proton-driven symporter, the import of glucose is mediated by an ABC-type transporter, and hence both require energy.
View Article and Find Full Text PDFPharmazie
December 2024
Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia.
: Major Depressive Disorder (MDD) is a prevalent and debilitating mental disorder that has been linked to hyperhomocysteinemia and folate deficiency. These conditions are influenced by the methylenetetrahydrofolate reductase () gene, which plays a crucial role in converting homocysteine to methionine and is essential for folate metabolism and neurotransmitter synthesis, including serotonin. : This study explored the association between and polymorphisms among Saudi MDD patients attending the Erada Complex for Mental Health and Erada Services outpatient clinic in Jeddah, Saudi Arabia.
View Article and Find Full Text PDFClin Rev Allergy Immunol
January 2025
Department of Dermatology and Venereology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China.
In recent years, epigenetic modifications have attracted significant attention due to their unique regulatory mechanisms and profound biological implications. Acting as a bridge between environmental stimuli and changes in gene activity, they reshape gene expression patterns, providing organisms with regulatory mechanisms to respond to environmental changes. A growing body of evidence indicates that epigenetic regulation plays a crucial role in the pathogenesis and progression of psoriasis.
View Article and Find Full Text PDFAnn Biomed Eng
January 2025
Department of Biomedical Engineering, Yildiz Technical University, Esenler, 34220, Istanbul, Türkiye.
Titanium (Ti)-based materials are favored for hard tissue applications, yet their bioinertness limits their success. This study hypothesizes that functionalizing Ti materials with chitosan nano/microspheres and calcitriol (VD) will enhance their bioactivity by improving cellular activities and mineralization. To test this, chitosan particles were applied uniformly onto Ti surfaces using electrophoretic deposition (EPD) at 20 V for 3 minutes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!