The defected acoustic band gap materials are promising a new generation of sensing technology based on layered cavities. We introduced a novel 1D defected phononic crystal (1D-DPC) as a high-sensitive gas sensor based on the Fano resonance transmitted window. Our designed (Lead-Epoxy) 1D-DPC multilayer has filled with a defect layer with different gases at different temperatures. In this study, Fano resonance-based acoustic band gap engineering has used to detect several gases such as O, CO, NH, and CH. For the first time, Fano resonance peaks appeared in the proposed gas sensor structures which attributed to high sensitivity, Q-factor, and figure-of-merit values for all gases. Also, the relation between the Fano resonance frequency and acoustic properties of gases at different temperatures has been studied in detail. The effect of the damping rate on the sensitivity of the gas sensor shows a linear behavior for CO, O, and NH. Further, we introduced the effect of temperature on the damping rate of the incident waves inside the 1D-DPC gas sensor. The highest sensitivity and figure of merit were obtained for O of 292 MHz/(kg/m) and 647 m/Kg, respectively. While the highest figure-of-merit value of 60 °C at 30 °C was attributed to O. The transfer matrix method is used for calculating the transmission coefficient of the incident acoustic wave. We believe that the proposed sensor can be experimentally implemented.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7578837 | PMC |
http://dx.doi.org/10.1038/s41598-020-75076-8 | DOI Listing |
Materials (Basel)
December 2024
College of Mathematics and Physics, Nanjing Tech University, Nanjing 211816, China.
We propose two types of structures to achieve the control of Fano and electromagnetically induced transparency (EIT) line shapes, in which dual one-dimensional (1D) photonic crystal nanobeam cavities (PCNCs) are side-coupled to a bus waveguide with different gaps. For the proposed type Ⅰ and type Ⅱ systems, the phase differences between the nanobeam periodic structures of the two cavities are and 0, respectively. The whole structures are theoretically analyzed via the coupled mode theory and numerically demonstrated using the three-dimensional finite-difference time-domain (3D FDTD) method.
View Article and Find Full Text PDFPhys Rev Lett
December 2024
Department of Electronic Engineering, Tsinghua University, Beijing 100084, China.
Fano resonance is achieved by tuning two coupled oscillators and has exceptional potential for modulating light dispersion. Here, distinct from the classical Fano resonances achieved through photonics methodologies, we introduce the Fano resonance in epsilon-near-zero (ENZ) media with novel electromagnetic properties. By adjusting the background permeability of the ENZ host, the transmission spectrum exhibits various dispersive line shapes and covers the full range of Fano parameter q morphologies, from negative to positive infinity.
View Article and Find Full Text PDFSci Rep
January 2025
Electrical Engineering Department, Kuwait University, 13060, Kuwait City, Kuwait.
Nanomaterials (Basel)
December 2024
Guangdong Provincial Key Laboratory of Photonics Information Technology, Guangdong University of Technology, Guangzhou 510006, China.
The in situ and label-free detection of molecular information in biological cells has always been a challenging problem due to the weak Raman signal of biological molecules. The use of various resonance nanostructures has significantly advanced Surface-enhanced Raman spectroscopy (SERS) in signal enhancement in recent years. However, biological cells are often immersed in different formulations of culture medium with varying refractive indexes and are highly sensitive to the temperature of the microenvironment.
View Article and Find Full Text PDFBiosensors (Basel)
November 2024
Institute of Laser Engineering, Osaka University, Suita 565-0871, Osaka, Japan.
Biosensors operating in the terahertz (THz) region are gaining substantial interest in biomedical analysis due to their significant potential for high-sensitivity trace-amount solution detection. However, progress in compact, high-sensitivity chips and methods for simple, rapid and trace-level measurements is limited by the spatial resolution of THz waves and their strong absorption in polar solvents. In this work, a compact nonlinear optical crystal (NLOC)-based reflective THz biosensor with a few arrays of asymmetrical meta-atoms was developed.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!