AI Article Synopsis

  • Small cell carcinoma of the ovary, hypercalcemic type (SCCOHT) is a rare and often deadly cancer that primarily affects young women, typically diagnosed around age 24, with current treatment options being limited and challenging.
  • Research has identified specific genetic mutations (SMARCA4 mutations) characteristic of SCCOHT, leading to potential advancements in diagnosis and therapy through targeted approaches.
  • A study shows that combining a BET inhibitor (OTX015) with a MEK inhibitor (cobimetinib) effectively reduces the cancer cell proliferation, indicating a promising dual treatment strategy that could also apply to other ovarian cancer types.

Article Abstract

Small cell carcinoma of the ovary, hypercalcemic type (SCCOHT) is a rare but often lethal cancer that is diagnosed at a median age of 24 years. Optimal management of patients is not well defined, and current treatment remains challenging, necessitating the discovery of novel therapeutic approaches. The identification of SMARCA4-inactivating mutations invariably characterizing this type of cancer provided insights facilitating diagnostic and therapeutic measures against this disease. We show here that the BET inhibitor OTX015 acts in synergy with the MEK inhibitor cobimetinib to repress the proliferation of SCCOHT Notably, this synergy is also observed in some SMARCA4-expressing ovarian adenocarcinoma models intrinsically resistant to BETi. Mass spectrometry, coupled with knockdown of newly found targets such as thymidylate synthase, revealed that the repression of a panel of proteins involved in nucleotide synthesis underlies this synergy both and , resulting in reduced pools of nucleotide metabolites and subsequent cell-cycle arrest. Overall, our data indicate that dual treatment with BETi and MEKi represents a rational combination therapy against SCCOHT and potentially additional ovarian cancer subtypes.

Download full-text PDF

Source
http://dx.doi.org/10.1158/1535-7163.MCT-20-0259DOI Listing

Publication Analysis

Top Keywords

reprogramming nucleotide
4
nucleotide metabolism
4
metabolism mediates
4
synergy
4
mediates synergy
4
synergy epigenetic
4
epigenetic therapy
4
therapy map
4
map kinase
4
kinase inhibition
4

Similar Publications

Itaconate facilitates viral infection via alkylating GDI2 and retaining Rab GTPase on the membrane.

Signal Transduct Target Ther

December 2024

National Key Laboratory of Immunity and Inflammation, Naval Medical University, Shanghai, 200433, China.

Metabolic reprogramming of host cells plays critical roles during viral infection. Itaconate, a metabolite produced from cis-aconitate in the tricarboxylic acid cycle (TCA) by immune responsive gene 1 (IRG1), is involved in regulating innate immune response and pathogen infection. However, its involvement in viral infection and underlying mechanisms remain incompletely understood.

View Article and Find Full Text PDF

Mass Spectrometry Imaging Reveals Spatial Metabolic Alterations and Salidroside's Effects in Diabetic Encephalopathy.

Metabolites

December 2024

Key Laboratory of Mass Spectrometry Imaging and Metabolomics, Minzu University of China, National Ethnic Affairs Commission, Beijing 100081, China.

Diabetic encephalopathy (DE) is a neurological complication of diabetes marked by cognitive decline and complex metabolic disturbances. Salidroside (SAL), a natural compound with antioxidant and neuroprotective properties, has shown promise in alleviating diabetic complications. Exploring the spatial metabolic reprogramming in DE and elucidating SAL's metabolic effects are critical for deepening our understanding of its pathogenesis and developing effective therapeutic strategies.

View Article and Find Full Text PDF

Pancreatic cancer (PanCa) is a catastrophic disease, being third lethal in both the genders around the globe. The possible reasons are extreme disease invasiveness, highly fibrotic and desmoplastic stroma, dearth of confirmatory diagnostic approaches and resistance to chemotherapeutics. This inimitable tumor microenvironment (TME) or desmoplasia with excessive extracellular matrix accumulation, create an extremely hypovascular, hypoxic and nutrient-deficient zone inside the tumor.

View Article and Find Full Text PDF

Malignant rhabdoid tumor (MRT) is one of the most aggressive childhood cancers for which no effective treatment options are available. Reprogramming of cellular metabolism is an important hallmark of cancer, with various metabolism-based drugs being approved as a cancer treatment. In this study, we use patient-derived tumor organoids (tumoroids) to map the metabolic landscape of several pediatric cancers.

View Article and Find Full Text PDF

Metabolic targeting of regulatory T cells in oral squamous cell carcinoma: new horizons in immunotherapy.

Mol Cancer

December 2024

Department of Dental Materials, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, No. 117 Nanjing North Street, Heping District, Shenyang, 110002, Liaoning, China.

Oral squamous cell carcinoma (OSCC) is a prevalent oral malignancy, which poses significant health risks with a high mortality rate. Regulatory T cells (Tregs), characterized by their immunosuppressive capabilities, are intricately linked to OSCC progression and patient outcomes. The metabolic reprogramming of Tregs within the OSCC tumor microenvironment (TME) underpins their function, with key pathways such as the tryptophan-kynurenine-aryl hydrocarbon receptor, PI3K-Akt-mTOR and nucleotide metabolism significantly contributing to their suppressive activities.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!