AI Article Synopsis

  • Dysregulation of calcium ion homeostasis and abnormal protein aggregation are key factors in the degeneration of motor neurons in ALS.
  • Mutations in annexin A11, identified in various ALS patients, are linked to increased protein aggregation and altered calcium responses, suggesting their role in disease progression.
  • The presence of these mutations leads to abnormal interactions in motor neuron cells, contributing to neuronal apoptosis and highlighting potential mechanisms behind ALS pathogenesis.

Article Abstract

Dysregulation of calcium ion homeostasis and abnormal protein aggregation have been proposed as major pathogenic hallmarks underpinning selective degeneration of motor neurons in amyotrophic lateral sclerosis (ALS). Recently, mutations in annexin A11 (), a gene encoding a Ca-dependent phospholipid-binding protein, have been identified in familial and sporadic ALS. However, the physiological and pathophysiological roles of remain unknown. Here, we report functions of related to intracellular Ca homeostasis and stress granule dynamics. We analyzed the exome sequences of 500 Korean patients with sALS and identified nine variants in 13 patients. The amino-terminal variants p.G38R and p.D40G within the low-complexity domain of ANXA11 enhanced aggregation propensity, whereas the carboxyl-terminal ANX domain variants p.H390P and p.R456H altered Ca responses. Furthermore, all four variants in ANXA11 underwent abnormal phase separation to form droplets with aggregates and led to the alteration of the biophysical properties of ANXA11. These functional defects caused by ALS-linked variants induced alterations in both intracellular Ca homeostasis and stress granule disassembly. We also revealed that p.G228Lfs*29 reduced ANXA11 expression and impaired Ca homeostasis, as caused by missense variants. Ca-dependent interaction and coaggregation between ANXA11 and ALS-causative RNA-binding proteins, FUS and hnRNPA1, were observed in motor neuron cells and brain from a patient with ALS-FUS. The expression of ALS-linked variants in motor neuron cells caused cytoplasmic sequestration of endogenous FUS and triggered neuronal apoptosis. Together, our findings suggest that disease-associated mutations can contribute to ALS pathogenesis through toxic gain-of-function mechanisms involving abnormal protein aggregation.

Download full-text PDF

Source
http://dx.doi.org/10.1126/scitranslmed.aax3993DOI Listing

Publication Analysis

Top Keywords

homeostasis stress
12
stress granule
12
dysregulation calcium
8
granule dynamics
8
abnormal protein
8
protein aggregation
8
intracellular homeostasis
8
als-linked variants
8
motor neuron
8
neuron cells
8

Similar Publications

Metabolomic and proteomic changes in leaves of rubber seedlings infected by Phytophthora palmivora.

Tree Physiol

January 2025

Special Research Incubator Unit of Fermentomics, Department of Biotechnology, Faculty of Agro-Industry, Kasetsart University, Bangkok 10900, Thailand.

Phytophthora palmivora, an oomycete pathogen, induces leaf fall disease in rubber trees (Hevea brasiliensis), causing significant economic losses. Effective disease management requires an understanding metabolic dynamics during infection. This study employed untargeted metabolomic and proteomic analyses to investigate the response of rubber seedling leaves to P.

View Article and Find Full Text PDF

A mitochondria-to-nucleus regulation mediated by the nuclear-translocated mitochondrial lncRNAs.

PLoS Genet

January 2025

Center for Functional Genomics and Bioinformatics, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, China.

A bidirectional nucleus-mitochondria communication is essential for homeostasis and stress. By acting as critical molecules, the nuclear-encoded lncRNAs (nulncRNAs) have been implicated in the nucleus-to-mitochondria anterograde regulation. However, role of mitochondrial-derived lncRNAs (mtlncRNAs) in the mitochondria-to-nucleus retrograde regulation remains elusive.

View Article and Find Full Text PDF

Oxidative stress is a major threat to plant growth and survival. To understand how plants cope with oxidative stress, we carried out a genetic screen for Arabidopsis (Arabidopsis thaliana) mutants with altered response to hydrogen peroxide (H2O2) in root growth. Herein, we report the characterization of one of the hypersensitive mutants obtained.

View Article and Find Full Text PDF

Induction of M1 polarization in BV2 cells by propofol intervention promotes perioperative neurocognitive disorders through the NGF/CREB signaling pathway: an experimental research.

Int J Surg

January 2025

Department of Anesthesiology, Jiangxi Cancer Hospital & Institute, Jiangxi Clinical Research Center for Cancer, The Second Affiliated Hospital of Nanchang Medical College, Jiangxi Key Laboratory of Oncology, Nanchang, Jiangxi Province, China.

Nerve growth factor (NGF) is critical in regulating the homeostasis of microglial cells. It activates various signaling pathways that mediate the phosphorylation of cAMP response element-binding protein (CREB) at key regulatory sites. The decrease in phosphorylated CREB (p-CREB) expression is linked to neuroinflammatory responses.

View Article and Find Full Text PDF

Glioprotective Effects of Resveratrol Against Glutamate-Induced Cellular Dysfunction: The Role of Heme Oxygenase 1 Pathway.

Neurotox Res

January 2025

Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.

Resveratrol, a natural polyphenol, has shown promising neuroprotective effects in several in vivo and in vitro experimental models. However, the mechanisms by which resveratrol mediates these effects are not fully understood. Glutamate is the major excitatory neurotransmitter in the brain; however, excessive extracellular glutamate levels can affect neural activity in several neurological diseases.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!