Aided by a neural network representation of the density functional theory potential energy landscape of water in the Revised Perdew-Burke-Ernzerhof approximation corrected for dispersion, we calculate several structural and thermodynamic properties of its liquid/vapor interface. The neural network speed allows us to bridge the size and time scale gaps required to sample the properties of water along its liquid/vapor coexistence line with unprecedented precision.

Download full-text PDF

Source
http://dx.doi.org/10.1063/5.0021852DOI Listing

Publication Analysis

Top Keywords

neural network
8
initio structure
4
structure thermodynamics
4
thermodynamics rpbe-d3
4
rpbe-d3 water/vapor
4
water/vapor interface
4
interface neural-network
4
neural-network molecular
4
molecular dynamics
4
dynamics aided
4

Similar Publications

A U-Net based partial convolutional time-domain separation model to identify motor units from surface electromyographic signals in real time.

J Electromyogr Kinesiol

December 2024

School of Information Science and Technology, Dalian Maritime University, Linghai Road 1, Dalian, Liaoning Province 116026, China. Electronic address:

This study proposed a U-Net based partial convolutional time-domain model for a real-time high-density surface electromyography (HD-sEMG) decomposition. The model combines U-Net and a separation block containing partial convolution, aiming to efficiently identify motor units (MUs) without preprocessing. The proposed U-Net based network was trained by the HD-sEMG signals with innervation pulse trains (IPTs) labels, and the results are compared between different step sizes, noises, and model structures under the sliding time window with 120 sampling points.

View Article and Find Full Text PDF

Background: Dialysis Access (DA) stenosis impacts hemodialysis efficiency and patient health, necessitating exams for early lesion detection. Ultrasound is widely used due to its non-invasive, cost-effective nature. Assessing all patients in large hemodialysis facilities strains resources and relies on operator expertise.

View Article and Find Full Text PDF

The increasing utilization of deep learning models in drug repositioning has proven to be highly efficient and effective. In this study, we employed an integrated deep-learning model followed by traditional drug screening approach to screen a library of FDA-approved drugs, aiming to identify novel inhibitors targeting the TNF-α converting enzyme (TACE). TACE, also known as ADAM17, plays a crucial role in the inflammatory response by converting pro-TNF-α to its active soluble form and cleaving other inflammatory mediators, making it a promising target for therapeutic intervention in diseases such as rheumatoid arthritis.

View Article and Find Full Text PDF

Background: Dyspnoea is one of the emergency department's (ED) most common and deadly chief complaints, but frequently misdiagnosed and mistreated. We aimed to design a diagnostic decision support which classifies dyspnoeic ED visits into acute heart failure (AHF), exacerbation of chronic obstructive pulmonary disease (eCOPD), pneumonia and "other diagnoses" by using deep learning and complete, unselected data from an entire regional health care system.

Methods: In this cross-sectional study, we included all dyspnoeic ED visits of patients ≥ 18 years of age at the two EDs in the region of Halland, Sweden, 07/01/2017-12/31/2019.

View Article and Find Full Text PDF

Memristive Ion Dynamics to Enable Biorealistic Computing.

Chem Rev

December 2024

Ming Hsieh Department of Electrical and Computer Engineering, University of Southern California, Los Angeles, California 90089, United States.

Conventional artificial intelligence (AI) systems are facing bottlenecks due to the fundamental mismatches between AI models, which rely on parallel, in-memory, and dynamic computation, and traditional transistors, which have been designed and optimized for sequential logic operations. This calls for the development of novel computing units beyond transistors. Inspired by the high efficiency and adaptability of biological neural networks, computing systems mimicking the capabilities of biological structures are gaining more attention.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!