AA3266 is a hybrid compound consisting of opioid receptor agonist and neurokinin-1 receptor (NK1R) antagonist pharmacophores. It was designed with the desire to have an analgesic molecule with improved properties and auxiliary anticancer activity. Previously, the compound was found to exhibit high affinity for μ- and δ-opioid receptors, while moderate binding to NK1R. In the presented contribution, we report on a deeper investigation of this hybrid. In vivo, we have established that AA3266 has potent antinociceptive activity in acute pain model, comparable to that of morphine. Desirably, with prolonged administration, our hybrid induces less tolerance than morphine does. AA3266, contrary to morphine, does not cause development of constipation, which is one of the main undesirable effects of opioid use. In vitro, we have confirmed relatively strong cytotoxic activity on a few selected cancer cell lines, similar to or greater than that of a reference NK1R antagonist, aprepitant. Importantly, our compound affects normal cells to smaller extent what makes our compound more selective against cancer cells. In silico methods, including molecular docking, molecular dynamics simulations and fragment molecular orbital calculations, have been used to investigate the interactions of AA3266 with MOR and NK1R. Insights from these will guide structural optimization of opioid/antitachykinin hybrid compounds.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7588979PMC
http://dx.doi.org/10.3390/ijms21207738DOI Listing

Publication Analysis

Top Keywords

hybrid compound
8
nk1r antagonist
8
hybrid
5
compound
5
aa3266
5
vivo vitro
4
vitro silico
4
silico studies
4
studies hybrid
4
compound aa3266
4

Similar Publications

In our large-scale search for antimicrobial-producing bacteria, we isolated an actinomycete strain from rhizospheric soil of . The strain designated BP-8 showed noticeable antibacterial activity. BP-8 was subjected to a whole-genome analysis via a polyphasic taxonomy approach, and its antibacterial metabolite was identified by HRLS-MS.

View Article and Find Full Text PDF

Background/objectives: The alarming rise in antibiotic resistance necessitates the discovery of novel antimicrobial agents. This study aims to design, synthesize, and evaluate new benzofuran-pyrazole-based compounds for their antimicrobial, antioxidant, and anti-inflammatory properties.

Methods: New benzofuran-pyrazole hybrid molecules were synthesized using the Vilsmeier-Haach reaction and other chemical processes.

View Article and Find Full Text PDF

In Silico Evaluation of Some Computer-Designed Fluoroquinolone-Glutamic Acid Hybrids as Potential Topoisomerase II Inhibitors with Anti-Cancer Effect.

Pharmaceuticals (Basel)

November 2024

Pharmaceutical and Therapeutic Chemistry Department, Faculty of Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540142 Targu Mures, Romania.

Fluoroquinolones (FQs) are topoisomerase II inhibitors with antibacterial activity, repositioned recently as anti-cancer agents. Glutamic acid (GLA) is an amino acid that affects human metabolism. Since an anti-cancer mechanism of FQs is human topoisomerase II inhibition, it is expected that FQ-GLA hybrids can act similarly.

View Article and Find Full Text PDF

Tacrine is a centrally active non-competitive reversible acetylcholinesterase inhibitor. It also exerts antagonising activity against -methyl-D-aspartate receptors. Tacrine was approved for the treatment of Alzheimer's disease in 1993, but was withdrawn from clinical use in 2013 because of its hepatotoxicity and gastrointestinal side effects.

View Article and Find Full Text PDF

Novel 4-alkoxy Meriolin Congeners Potently Induce Apoptosis in Leukemia and Lymphoma Cells.

Molecules

December 2024

Institute of Organic Chemistry and Macromolecular Chemistry, Faculty of Mathematics and Natural Sciences, Heinrich Heine University Düsseldorf, Universitätsstraße 1, D-40225 Düsseldorf, Germany.

(3-(pyrimidin-4-yl)-7-azaindoles) are synthetic hybrids of the naturally occurring alkaloids and and display a strong cytotoxic potential. We have recently shown that the novel derivative is highly cytotoxic in several lymphoma and leukemia cell lines as well as in primary patient-derived lymphoma and leukemia cells and predominantly targets cyclin-dependent kinases (CDKs). Here, we efficiently synthesized nine novel 2-aminopyridyl congeners (-), i.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!