Along with the increasing popularity of larval zebrafish as an experimental animal in the fields of drug screening, neuroscience, genetics, and developmental biology, the need for tools to deal with multiple larvae has emerged. Microfluidic channels have been employed to handle multiple larvae simultaneously, even for sensing electroencephalogram (EEG). In this study, we developed a microfluidic chip capable of uniform and continuous drug infusion across all microfluidic channels during EEG recording. Owing to the modular design of the microfluidic channels, the number of animals under investigation can be easily increased. Using the optimized design of the microfluidic chip, liquids could be exchanged uniformly across all channels without physically affecting the larvae contained in the channels, which assured a stable environment maintained all the time during EEG recording, by eliminating environmental artifacts and leaving only biological effects to be seen. To demonstrate the usefulness of the developed system in drug screening, we continuously measured EEG from four larvae without and with pentylenetetrazole application, up to 60 min. In addition, we recorded EEG from valproic acid (VPA)-treated zebrafish and demonstrated the suppression of seizure by VPA. The developed microfluidic system could contribute to the mass screening of EEG for drug development to treat neurological disorders such as epilepsy in a short time, owing to its handy size, cheap fabrication cost, and the guaranteed uniform drug infusion across all channels with no environmentally induced artifacts.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7590171PMC
http://dx.doi.org/10.3390/s20205903DOI Listing

Publication Analysis

Top Keywords

microfluidic channels
12
microfluidic system
8
larval zebrafish
8
drug screening
8
multiple larvae
8
developed microfluidic
8
microfluidic chip
8
drug infusion
8
eeg recording
8
design microfluidic
8

Similar Publications

Versatile hydrogels prepared by microfluidics technology for bone tissue engineering applications.

J Mater Chem B

January 2025

State Key Laboratory of Oral Disease & National Center for Stomatology & National Clinical Center for Oral Diseases & Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.

Bone defects are a prevalent issue resulting from various factors, such as trauma, degenerative diseases, congenital disabilities, and the surgical removal of tumors. Current methods for bone regeneration have limitations. In this context, the fusion of tissue engineering and microfluidics has emerged as a promising strategy in the field of bone regeneration.

View Article and Find Full Text PDF

Microfluidic-assisted sol-gel preparation of monodisperse mesoporous silica microspheres with controlled size, surface morphology, porosity and stiffness.

Nanoscale

January 2025

National Engineering Research Center for Colloidal Materials, School of Chemistry & Chemical Engineering, Shandong University, Jinan 250100, P. R. China.

The controllable synthesis of monodisperse mesoporous silica microspheres with unique physicochemical properties is becoming increasingly important for a variety of applications such as catalysts, chromatography, drug delivery and sensors. Here, we report a facile microfluidic-assisted sol-gel method for the preparation of silica microspheres with precisely controlled properties such as the size of the microspheres, the surface morphology, porosity and stiffness. All these properties can be manipulated by changing specific synthesis parameters, such as changing the microfluidic channels to tune the size of the microdroplets (tens to hundreds of microns), changing the contents of the precursor solution to manipulate the surface morphology (wrinkled to smooth surface) and changing the gelation/annealing conditions to tune the porosity (surface area up to 1021 m g) and stiffness of the microspheres (elastic modulus tunable from 0.

View Article and Find Full Text PDF

Centrifugation is crucial for size and density-based sample separation, but low-volume or delicate samples suffer from loss and impurity issues during repeated spins. We introduce the "Spinochip", a novel microfluidic system utilizing centrifugal forces for efficient filling of dead-end microfluidic channels. The Spinochip enables versatile fluid manipulation with a single reservoir for both inlet and outlet functions.

View Article and Find Full Text PDF

Droplet coalescence in microchannels is a complex phenomenon influenced by various parameters such as droplet size, velocity, liquid surface tension, and droplet-droplet spacing. In this study, we thoroughly investigate the impact of these control parameters on droplet coalescence dynamics within a sudden expansion microchannel using two distinct numerical methods. Initially, we employ the boundary element method to solve the Brinkman integral equation, providing detailed insights into the underlying physics of droplet coalescence.

View Article and Find Full Text PDF

Electrochemical impedance spectroscopy has great potential for laboratory blood tests. The overall aim of this study is to develop a microfluidic sensor for determining the physical properties and hematological parameters of blood based on its dielectric spectra. Impedance was measured in flowing blood to prevent aggregation and sedimentation at frequencies between 40 Hz and 110 MHz.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!