Background: Although anthrax occurs globally, the burden of the disease remains particularly high in Africa. Furthermore, the disease anthrax has significant public health and economic implications. However, sufficient attention has not been given to the geographic distribution of anthrax outbreaks and cases in Lesotho. Therefore, this study investigates the spatial patterns of anthrax outbreaks and cases among livestock in Lesotho from 2005 to 2016.
Methods: A cross-sectional study design was adopted to realise the objectives of this study using retrospective data of anthrax outbreaks and cases recorded by the Department of Livestock Services (DLS) between 2005 and 2016. Anthrax outbreaks were geo-coded at village level and aggregated at district level. Proportions and 95% CI of anthrax outbreaks and cases by village and district were calculated. Cartographic maps displaying the distribution of anthrax outbreaks and cases at village and district level were constructed.
Results: A total of 38 outbreaks were reported over the study period, and they were clustered in the Lowlands districts of Lesotho. Most outbreaks (52.6%, 20/38) in livestock were reported in the Maseru district. The Leribe district reported the lowest proportions of outbreaks (5.3%, 2/38) and cases (0.6%, 3/526). At the village level, 18% (7/38) of outbreaks were in Maseru Urban, followed by Ratau (16%, 6/38) and Mofoka (13%, 5/38). The Maseru district reported the highest (1.3%, 369/29,070) proportion of cases followed by Mafeteng (0.9%, 73/8530). The village with the most cases was Kolo (10.5%, 21/200), followed by Thaba-Chitja (7.7%, 33/430).
Conclusion: Anthrax outbreaks and cases exclusively occur in the Lowlands districts of Lesotho, with villages such as Mahobong, Pitseng, Kolo, and Thaba-Chitja having a higher risk of anthrax disease. Findings of the present study have serious public health implications in light of the fact that between 2003 and 2008 Lesotho's main abattoir was closed; hence, most of the meat in Lesotho was imported and/or sourced from the informal slaughter facilities. Much larger studies are needed to further investigate factors contributing to spatial disparities in anthrax outbreaks and cases observed in this study. Findings of the present study can be used to guide the formulation of a policy on prevention and control of anthrax in Lesotho.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7588925 | PMC |
http://dx.doi.org/10.3390/ijerph17207584 | DOI Listing |
Am J Trop Med Hyg
January 2025
MRC/UVRI & LSHTM Uganda Research Unit, Entebbe, Uganda.
Between April and November 2023, 27 unexplained human deaths that presented with swelling of the arms, skin sores with black centers, difficulty in breathing, obstructed swallowing, headaches, and other body aches were reported in Kyotera District, Uganda by the Public Health Emergency Operations Center. Subsequently, the death of cattle on farms and the consumption of carcass meat by some residents were also reported. Field response teams collected clinical/epidemiological data and autopsy samples to determine the cause of deaths.
View Article and Find Full Text PDFPLoS Negl Trop Dis
December 2024
Emerging Pathogens Institute, University of Florida, Gainesville, Florida, United States of America.
Bacillus cereus biovar anthracis (Bcbva) causes anthrax-like disease in animals, particularly in the non-human primates and great apes of West and Central Africa. Genomic analyses revealed Bcbva as a member of the B. cereus species that carries two plasmids, pBCXO1 and pBCXO2, which have high sequence homology to the B.
View Article and Find Full Text PDFPLoS One
December 2024
Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Onderstepoort, South Africa.
Environmental and climatic factors, as well as host demographics and behaviour, significantly influence the exposure of herbivorous mammalian hosts to pathogens such as Bacillus anthracis, the causative agent of anthrax. Until the early 1990s in Kruger National Park (KNP), kudu (Tragelaphus strepsiceros) was the host species most affected by anthrax, with outbreaks occurring predominantly in the dry season, particularly during drought cycles. However, the most affected host species has shifted to impala (Aepyceros melampus), with more frequent anthrax outbreaks during the wet season.
View Article and Find Full Text PDFWestern Pac Surveill Response J
December 2024
Department of Health, Manila, Philippines.
Epidemiol Infect
December 2024
Department of Wildlife, Animal Resources Management, College of Veterinary Medicine, Animal Resources and Biosecurity, Makerere University, Kampala, Uganda.
Anthrax is a bacterial zoonotic disease caused by We qualitatively examined facilitators and barriers to responding to a potential anthrax outbreak using the capability, opportunity, motivation behaviour model (COM-B model) in the high-risk rural district of Namisindwa, in Eastern Uganda. We chose the COM-B model because it provides a systematic approach for selecting evidence-based techniques and approaches for promoting the behavioural prompt response to anthrax outbreaks. Unpacking these facilitators and barriers enables the leaders and community members to understand existing resources and gaps so that they can leverage them for future anthrax outbreaks.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!