Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Catalytic and electrocatalytic applications of supported metal nanoparticles are hindered due to an aggregation of metal nanoparticles and catalytic leaching under harsh operations. Hence, stable and leaching free catalysts with high surface area are extremely desirable but also challenging. Here we report a gold nanoparticles-hosted mesoporous nitrogen doped carbon matrix, which is prepared using bovine serum albumin (BSA) through calcination. BSA plays three roles in this process as a reducing agent, capping agent and carbon precursor, hence the protocol exhibits economic and sustainable. Gold nanoparticles at N-doped BSA carbon (AuNPs@NBSAC)-modified three-electrode strip-based flexible sensor system has been developed, which displayed effective, sensitive and selective for simultaneous detection of uric acid (UA) and dopamine (DA). The AuNPs@NBSAC-modified sensor showed an excellent response toward DA with a linear response throughout the concentration range from 1 to 50 μM and a detection limit of 0.05 μM. It also exhibited an excellent response toward UA, with a wide detection range from 5 to 200 μM as well as a detection limit of 0.1 μM. The findings suggest that the AuNPs@NBSAC nanohybrid reveals promising applications and can be considered as potential electrode materials for development of electrochemical biosensors.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1088/1361-6528/abc388 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!