One aspect of the challenge of engineering viable tissuesis the generation of perfusable microvessels of varying diameters. In this work, we take the approach of using hydrogel-based microfluidics seeded with endothelial cells (ECs) to form small artery/vein-like vessels, in conjunction with using the self-assembly behavior of ECs to form capillary-like vessels when co-cultured with multipotent stromal cells (MSCs). In exploring this approach, we focused on investigating collagen, fibrin, and various collagen-fibrin co-gel formulations for their potential suitability as serving as scaffold materials by surveying their angiogencity and mechanical properties. Fibrin and co-gels successfully facilitated multicellular EC sprouting, whereas collagen elicited a migration response of individual ECs, unless supplemented with the protein kinase C (PKC)-activator, phorbol 12-myristate 13-acetate. Collagen scaffolds were also found to severely contract when embedded with mesenchymal cells, but this contraction could be abrogated with the addition of fibrin. Increasing collagen content within co-gel formulations, however, imparted a higher compressive modulus and allowed for the reliable formation of intact hydrogel-based microchannels which could then be perfused. Given the bioactivity and mechanical benefits of fibrin and collagen, respectively, collagen-fibrin co-gels are a promising scaffold option for generating vascularized tissue constructs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1088/1748-605X/abc38f | DOI Listing |
Cytotherapy
January 2025
Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain. Electronic address:
Background/aims: Human mesenchymal stromal cells (hMSC) are multipotent adult cells commonly used in regenerative medicine as advanced therapy medicinal products. The expansion of these cells in xeno-free supplements is highly encouraged by regulatory agencies due to safety concerns. However, the number of supplements with robust performance and consistency for hMSC expansion are limited.
View Article and Find Full Text PDFHematol Transfus Cell Ther
November 2024
Hospital São Rafael, Salvador, Bahia, Brazil; Instituto D'Or de Pesquisa e Ensino (IDOR), Salvador, Bahia, Brazil; Instituto Gonçalo Moniz, FIOCRUZ, Salvador, Bahia, Brazil. Electronic address:
Mesenchymal stromal cells are multipotent cells present in various tissues that are widely studied for relevant therapeutic potential due to their paracrine immunomodulatory and tissue regenerating properties. Many mesenchymal stromal cell-based products are under investigation for the treatment of different clinical conditions. Recently, the therapeutic potential of the extracellular vesicles released by these cells has been under focus, with emphasis on clinical translation.
View Article and Find Full Text PDFCells
January 2025
The Laboratory for the Bioengineering of Tissues (BioTis U1026), National Institute of Health and Medical Research (INSERM), Université de Bordeaux, F-33000 Bordeaux, France.
SCAPs (Stem Cells from Apical Papilla), derived from the apex of forming wisdom teeth, extracted from teenagers for orthodontic reasons, belong to the MSCs (Mesenchymal Stromal Cells) family. They have multipotent differentiation capabilities and are a potentially powerful model for investigating strategies of clinical cell therapies. Since autophagy-a regulated self-eating process-was proposed to be essential in osteogenesis, we investigated its involvement in the SCAP model.
View Article and Find Full Text PDFDokl Biochem Biophys
January 2025
Institute of Biomedical Problems, Russian Academy of Sciences, 123007, Moscow, Russia.
One of the most obvious manifestations of the negative impact of space flight factors on the human physiology is osteopenia. With the active development of manned space flights and the increase in the duration of humans' persistence in weightlessness, there is a growing need to understand the mechanisms of changes occurring at the cellular level involved in the replenishment of bone tissue. Using the RNA sequencing method, changes in the transcriptome profile of MMSCs were studied after a 5-day simulation of the microgravity effects.
View Article and Find Full Text PDFMed Oncol
January 2025
Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
The heterogeneity and evolution of tumors remain significant obstacles in cancer treatment, contributing to both therapy resistance and relapse. Mesenchymal stem/stromal cells (MSCs) are multipotent stromal cells within the tumor microenvironment that interact with tumor cells through various mechanisms, including cell fusion. While previous research has largely focused on the effects of MSC-tumor cell fusion on tumor proliferation, migration, and tumorigenicity, emerging evidence indicates that its role in tumor maintenance, evolution, and recurrence, particularly under stress conditions, may be even more pivotal.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!