Online Liquid Chromatography-Raman Spectroscopy Using the Vertical Flow Method.

Anal Chem

Department of Applied Chemistry and Institute of Molecular Science, National Chiao Tung University, Hsinchu 30010, Taiwan.

Published: November 2020

Liquid chromatography and Raman spectroscopy (LC-Raman system) were combined and developed with the aid of the vertical flow method that enhances the Raman signal intensity. The LC-Raman system enabled the online acquisition of the nonresonance Raman spectrum of LC eluates. We employed singular value decomposition (SVD) and subsequent reconstruction of the components for the analysis of two-dimensional (temporal and spectral) data. The obtained components were consistent with the Raman spectra and elution patterns of the samples, indicating the appropriateness of the SVD-based procedure. The rise and fall times of the elution band of the temporal component were considered as the instrumental function. DO mixed with HO exhibited increased full width at half maximum of the elution band of up to 30% in comparison to the calculated value because of diffusion. Band broadening was less significant in the case in which an immiscible solute (pentane) was mixed with HO. The limits of detection and quantitation were 1.2 ± 0.1, 2.1 ± 0.1, and 2.7 ± 0.1 mM and 4.1 ± 0.1, 6.9 ± 0.1, and 9.1 ± 0.2 mM for the ortho-, meta-, and para-isomers of methoxyphenol, respectively. The nonresonance Raman experiment provides the molecular specificity to LC on the basis of the inherent properties of eluates.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.analchem.0c03015DOI Listing

Publication Analysis

Top Keywords

vertical flow
8
flow method
8
lc-raman system
8
nonresonance raman
8
elution band
8
raman
5
online liquid
4
liquid chromatography-raman
4
chromatography-raman spectroscopy
4
spectroscopy vertical
4

Similar Publications

A new insight on simultaneous water purification and greenhouse gas reduction by constructing sulfur-siderite driven autotrophic denitrification pathways in constructed wetlands.

Water Res

January 2025

College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, Shandong, China; Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, Shandong, China. Electronic address:

Sulfur-siderite driven autotrophic denitrification (SSAD) has received increasing attention for nutrient removal in constructed wetlands (CWs). Nevertheless, its effectiveness in simultaneous water purification and greenhouse gases (GHGs) reduction remains obscure. In this study, three vertical flow constructed wetlands (VFCWs), filled with quartz sand (CCW), sulfur (S-CW), and sulfur-siderite mixed substrates (SS-CW), were constructed to investigate the underlying mechanisms of SSAD on water purification enhancement and GHGs reduction.

View Article and Find Full Text PDF

This research presents a numerical study over the unsteady natural convection of an electrically conducting fluid in an open-ended vertical parallel plate microchannel under uniform and asymmetric heat flux subjected to a uniform lateral magnetic field. Slip velocity, as well as temperature jump at channel walls, are modeled using a first-order model. The effects of Knudsen number)(, heat flux ratio)rq(, Grashof number)(, and Hartmann number)M(on mass flow rate, the maximum temperature of the wall, and average Nusselt () as a function of time are discussed.

View Article and Find Full Text PDF

Portable paper-based microfluidic devices based on CuS@AgS nanocomposites for colorimetric/electrochemical dual-mode detection of dopamine.

Biosens Bioelectron

January 2025

Centre for Advanced Optoelectronic Functional Materials Research and Key Laboratory of UV Light-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, 130024, Changchun, China. Electronic address:

The development of integrated multiple signal outputs within a single platform is highly significant for efficient and accurate on-site biomarker detection. Herein, colorimetric/electrochemical dual-mode microfluidic paper-based analytical devices (μPADs) were designed for portable, visual and accurate dopamine (DA) detection. The dual-mode μPADs, featuring folded structure, integrate a colorimetric layer and an electrochemical layer using wax printing and laser-induced graphene (LIG) pyrolysis techniques, allowing the vertical flow of analyte solution.

View Article and Find Full Text PDF

To alleviate water resource shortages and tensions and meet the water diversion needs of different river basins, buried (cross-dam) pipelines have become an essential component of water diversion projects. They are installed in levee projects in key river basins such as the Yellow River, Jingjiang River, and Beijiang River. Due to the complex engineering structure and multiple sources of vibration excitation, if vibrations propagate along the pipeline axis towards the surrounding levee, they could have an adverse impact on the stability and safe operation of the levee.

View Article and Find Full Text PDF

Constructed wetland (CW) technology has attracted much attention due to its economical and environmentally friendly features. The low dissolved oxygen (DO) and low carbon/nitrogen (C/N) ratio in the wetland influent water affect the treatment performance of CW, resulting in a decrease in the removal efficiency of ammonia nitrogen (NH -N) and nitrate nitrogen (NO -N). In order to address this problem, this study optimized the pollutants removal performance of unsaturated vertical flow constructed wetland (UVFCW) by adding sustained-release carbon sources (corn cobs + polybutylene adipate terephthalate (PBAT)).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!