Discovery of Prenyltransferase Inhibitors with and Antibacterial Activity.

ACS Infect Dis

Institute of Chemical Biology and Nanomedicine, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, and Department of Chemistry, Hunan University, Changsha 410082, China.

Published: November 2020

-prenyltransferases such as undecaprenyl diphosphate synthase (UPPS) and decaprenyl diphosphate synthase (DPPS) are essential enzymes in bacteria and are involved in cell wall biosynthesis. UPPS and DPPS are absent in the human genome, so they are of interest as targets for antibiotic development. Here, we screened a library of 750 compounds from National Cancer Institute Diversity Set V for the inhibition of DPPS and found 17 hits, and then ICs were determined using dose-response curves. Compounds were tested for growth inhibition against a panel of bacteria, for activity in a / model, and for mammalian cell toxicity. The most active DPPS inhibitor was the dicarboxylic acid redoxal (compound ), which also inhibited undecaprenyl diphosphate synthase (UPPS) as well as farnesyl diphosphate synthase. was active against , , Sterne, and , and there was a 3.4-fold increase in IC on addition of a rescue agent, undecaprenyl monophosphate. We found that was also a weak protonophore uncoupler, leading to the idea that it targets both isoprenoid biosynthesis and the proton motive force. In an / model, reduced the burden 3 times more effectively than did ampicillin.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsinfecdis.0c00472DOI Listing

Publication Analysis

Top Keywords

diphosphate synthase
16
undecaprenyl diphosphate
8
synthase upps
8
discovery prenyltransferase
4
prenyltransferase inhibitors
4
inhibitors antibacterial
4
antibacterial activity
4
activity -prenyltransferases
4
-prenyltransferases undecaprenyl
4
diphosphate
4

Similar Publications

Phytoene synthase (PSY) is one of key enzymes in carotenogenesis that catalyze two molecules of geranylgeranyl diphosphate to produce phytoene. PSY is widespread in bacteria, archaea, and eukaryotes. Currently, functional role and catalytic mechanism of archaeal PSY homologues have not been fully clarified due to the limited reports.

View Article and Find Full Text PDF

Plant carotenoids are plastid-synthesized isoprenoids with roles as photoprotectants, pigments, and precursors of bioactive molecules such as the hormone abscisic acid (ABA). The first step of the carotenoid biosynthesis pathway is the production of phytoene from geranylgeranyl diphosphate (GGPP), catalyzed by phytoene synthase (PSY). GGPP produced by plastidial GGPP synthases (GGPPS) is channeled to the carotenoid pathway by direct interaction of GGPPS and PSY enzymes.

View Article and Find Full Text PDF

Enhancing Cannabichromenic Acid Biosynthesis in .

ACS Synth Biol

January 2025

State Key Laboratory of Fine Chemicals, Frontiers Science Centre for Smart Materials Oriented Chemical Engineering, School of Bioengineering, Dalian University of Technology, Dalian 116024, China.

Cannabichromene (CBC), a valuable but extremely low-abundance component of cannabinoids in L., is known for its ability to promote neurogenesis. The scarcity of CBC in natural is primarily attributed to the inefficiency of the 1-deoxy-D-xylulose 5-phosphate/2-C-methyl-D-erythritol 4 phosphate (DOXP/MEP) and fatty acid metabolism pathways, along with the limited competitive advantage of cannabichromenic acid synthetase (CBCAS) compared to other cannabinoid synthases.

View Article and Find Full Text PDF

Rice transcription factor bHLH25 confers resistance to multiple diseases by sensing HO.

Cell Res

January 2025

State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan, China.

Hydrogen peroxide (HO) is a ubiquitous signal regulating many biological processes, including innate immunity, in all eukaryotes. However, it remains largely unknown that how transcription factors directly sense HO in eukaryotes. Here, we report that rice basic/helix-loop-helix transcription factor bHLH25 directly senses HO to confer resistance to multiple diseases caused by fungi or bacteria.

View Article and Find Full Text PDF

Apo structure of Mycobacterium tuberculosis 1-deoxy-d-xylulose 5-phosphate synthase DXPS: Dynamics and implications for inhibitor design.

Biochem Biophys Res Commun

January 2025

Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, the Netherlands. Electronic address:

The enzyme 1-deoxy-d-xylulose-5-phosphate synthase (DXPS) catalyses the first step of the MEP pathway, a key process for isoprenoid biosynthesis in bacteria that is absent in humans, making it a promising drug target. We present the structure of Mycobacterium tuberculosis DXPS in its apo form, obtained through a soaking method that removes thiamine diphosphate (ThDP) and metals from pre-formed crystals. The apo structure had three regions with absence of electron density near the active site that are unique to the apo form of the enzyme.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!