Genome wide association studies enabled prediction of many candidate genes for flowering, maturity and plant height under differing day-length conditions. Some genes were envisaged only from derived B. rapa. Flowering and plant height are the key life history traits. These are crucial for adaptation and productivity. Current investigations aimed to examine genotypic differences governing days to flowering, maturity and plant height under contrasting day-length conditions; and identify genomic regions governing the observed phenotypic variations. An association panel comprising 195 inbred lines, representing natural (NR) and derived (DR) forms of Brassica rapa (AA; 2n = 20), was evaluated at two sowing dates and two locations, representing different day-length regimes. Derived B. rapa is a unique pre-breeding material extracted from B. juncea (AABB; 2n = 36). Population structure analysis, using DArT genotypes established derived B. rapa as a genetic resource distinct from natural B. rapa. Genome wide association studies facilitated detection of many trait associated SNPs. Chromosomes A03, A05 and A09 harboured majority of these. Functional annotation of the associated SNPs and surrounding genome space(s) helped to predict 43 candidate genes. Many of these were predicted under specific day-length conditions. Important among these were the genes encoding floral meristem identity (SPL3, SPL15, AP3, BAM2), photoperiodic responses (COL2, AGL18, SPT, NF-YC4), gibberellic acid biosynthesis (GA1) and regulation of flowering (EBS). Some of the predicted genes were detected for DR subpanel alone. Genes controlling hormones, auxins and gibberellins appeared important for the regulation of plant height. Many of the significant SNPs were located on chromosomes harbouring previously reported QTLs and candidate genes. The identified loci may be used for marker-assisted selection after due validation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00122-020-03707-9 | DOI Listing |
BMC Plant Biol
January 2025
Department of Biotechnology, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran.
Background: Preserving plant genetic resources is essential for tackling global food security challenges. Effectively meeting future agricultural demands requires comprehensive and efficient assessments of genetic diversity in breeding programs and germplasm from gene banks. This research investigated the diversity of pheno-morphological traits, along with the fatty acid and tocopherol content and composition, in 135 double haploid lines of camelina.
View Article and Find Full Text PDFBMC Plant Biol
January 2025
Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
Background: Root rot is a major disease affecting alfalfa (Medicago sativa L.), causing significant yield losses and economic damage. The primary pathogens include Fusarium spp.
View Article and Find Full Text PDFPlanta
January 2025
School of Life Science, Anhui Agricultural University, 130 Changjiang West Road, Hefei, 230036, People's Republic of China.
Brown cotton and white cotton are two important raw materials used in the cotton fiber industry. Clarifying the differences in morphology, agronomic traits, and fiber pigments between these varieties can facilitate the implementation of corresponding cultivation and breeding techniques. Therefore, we obtained F generation brown cotton plants through hybridization and compared them with their parents.
View Article and Find Full Text PDFSci Data
January 2025
Section of Intensive Plant Food Systems, Albrecht Daniel Thaer-Institute of Agricultural and Horticultural Sciences, Humboldt Universität zu Berlin, Berlin, Germany.
Multi-environmental trials (MET) with temporal and spatial variance are crucial for understanding genotype-environment-management (GxExM) interactions in crops. Here, we present a MET dataset for winter wheat in Germany. The dataset encompasses MET spanning six years (2015-2020), six locations and nine crop management scenarios (consisting of combinations for three treatments, unbalanced in each location and year) comparing 228 cultivars released between 1963 and 2016, amounting to a total of 526,751 data points covering 24 traits.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Agronomy, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan.
Potato is cultivated all the year round in Pakistan. However, the major crop is the autumn crop which is planted in mid-October and contributes 80-85% of the total production. The abrupt climate change has affected the weather patterns all over the world, resulting in the reduction of the mean air temperature in autumn by almost 1.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!