Artificial neural networks for the prediction of solvation energies based on experimental and computational data.

Phys Chem Chem Phys

Boehringer Ingelheim Pharma GmbH & Co. KG, Analytical Development Biologicals, Birkendorfer Strasse 65, D-88397 Biberach (Riss), Germany.

Published: November 2020

The knowledge of thermodynamic properties for novel electrolyte formulations is of fundamental interest for industrial applications as well as academic research. Herewith, we present an artificial neural networks (ANN) approach for the prediction of solvation energies and entropies for distinct ion pairs in various protic and aprotic solvents. The considered feed-forward ANN is trained either by experimental data or computational results from conceptual density functional theory calculations. The proposed concept of mapping computed values to experimental data lowers the amount of time-consuming and costly experiments and helps to overcome certain limitations. Our findings reveal high correlation coefficients between predicted and experimental values which demonstrate the validity of our approach.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d0cp03701jDOI Listing

Publication Analysis

Top Keywords

artificial neural
8
neural networks
8
prediction solvation
8
solvation energies
8
experimental data
8
networks prediction
4
energies based
4
experimental
4
based experimental
4
experimental computational
4

Similar Publications

Weighted Echo State Graph Neural Networks Based on Robust and Epitaxial Film Memristors.

Adv Sci (Weinh)

January 2025

College of Physics Science & Technology, School of Life Sciences, Institute of Life Science and Green Development, Key Laboratory of Brain-Like Neuromorphic Devices and Systems of Hebei Province, Hebei University, Baoding, 071002, China.

Hardware system customized toward the demands of graph neural network learning would promote efficiency and strong temporal processing for graph-structured data. However, most amorphous/polycrystalline oxides-based memristors commonly have unstable conductance regulation due to random growth of conductive filaments. And graph neural networks based on robust and epitaxial film memristors can especially improve energy efficiency due to their high endurance and ultra-low power consumption.

View Article and Find Full Text PDF

Sentiment analysis has become a difficult and important task in the current world. Because of several features of data, including abbreviations, length of tweet, and spelling error, there should be some other non-conventional methods to achieve the accurate results and overcome the current issue. In other words, because of those issues, conventional approaches cannot perform well and accomplish results with high efficiency.

View Article and Find Full Text PDF

Fluid flow across a Riga Plate is a specialized phenomenon studied in boundary layer flow and magnetohydrodynamic (MHD) applications. The Riga Plate is a magnetized surface used to manipulate boundary layer characteristics and control fluid flow properties. Understanding the behavior of fluid flow over a Riga Plate is critical in many applications, including aerodynamics, industrial, and heat transfer operations.

View Article and Find Full Text PDF

Graph data is essential for modeling complex relationships among entities. Graph Neural Networks (GNNs) have demonstrated effectiveness in processing low-order undirected graph data; however, in complex directed graphs, relationships between nodes extend beyond first-order connections and encompass higher-order relationships. Additionally, the asymmetry introduced by edge directionality further complicates node interactions, presenting greater challenges for extracting node information.

View Article and Find Full Text PDF

Visualized neural network-based vibration control for pigeon-like flexible flapping wings.

ISA Trans

January 2025

School of Artificial Intelligence, Anhui University, Hefei 230601, China. Electronic address:

This study investigates pigeon-like flexible flapping wings, which are known for their low energy consumption, high flexibility, and lightweight design. However, such flexible flapping wing systems are prone to deformation and vibration during flight, leading to performance degradation. It is thus necessary to design a control method to effectively manage the vibration of flexible wings.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!