A three-dimensional CoNi-MOF nanosheet array-based immunosensor for sensitive monitoring of human chorionic gonadotropin with core-shell ZnNi-MOF@Nile Blue nanotags.

Analyst

Key Laboratory of Magnetic Molecules and Magnetic Information Materials (Ministry of Education), School of Chemistry and Material Science, Shanxi Normal University, Linfen 041004, China.

Published: January 2021

A CoNi-based metal-organic framework (CoNi-MOF) nanosheet array is synthesized by the treatment of a CoNi layered double hydroxide nanosheet array on Ni foam with 3,5-diaminobenzoic acid. The CoNi-MOF nanosheet array with amino and carboxyl groups can be used to capture the human chorionic gonadotropin (HCG) primary antibody (HCG Ab1). Nile Blue decorated ZnNi-MOF (NB@ZnNi-MOF) spheres immobilized with HCG secondary antibodies (HCG Ab2) are used for signal amplification. When HCG exists in an analytical sample, a sandwich structure is formed and an electrochemical signal is produced. The analytical signal generated during the detection is caused by the conversion of Co(ii) and Co(iii) in the CoNi-MOF nanosheet array. The Nile Blue of the NB@ZnNi-MOF sphere, as a kind of redox-active species, is responsible for the electrochemical signal amplification in the immunosensor. On the basis of the above advantages, the HCG immunosensor exhibits a lower limit of detection (1.85 × 10-3 mIU mL-1) and a wide linear range from 0.005 mIU mL-1 to 250 mIU mL-1. Additionally, this immunosensor is used to quantitatively detect HCG in human blood serum and shows good correlations with the standard enzyme-linked immunosorbent assay (ELISA), providing a high value on clinical diagnosis.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d0an01648aDOI Listing

Publication Analysis

Top Keywords

coni-mof nanosheet
16
nanosheet array
16
miu ml-1
12
human chorionic
8
chorionic gonadotropin
8
nile blue
8
signal amplification
8
electrochemical signal
8
hcg
7
nanosheet
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!