Characterization of nonvolatile molecules in exhaled breath particles can be used for respiratory disease monitoring and diagnosis. Conventional methods for the collection of nonvolatile molecules in breath heavily rely on the physical properties of exhaled breath particles. Strategies taking advantage of their chemical properties have not yet been explored. In the present study, we developed a column system in which the surface chemistry between organic nonvolatile molecules and octadecyl carbon chain was exploited for the comprehensive collection of metabolites, lipids, and proteins. We demonstrated that the collection system had the capture efficiency of 99% and the capacity to capture representative nonvolatile molecules. The collection system was further evaluated using human subjects and proteins collected from human exhaled breath were characterized and identified using gel electrophoresis and bottom-up proteomics. The identified 303 proteins from mass spectrometry were further searched against reported bronchoalveolar lavage fluid proteomes and it was shown that 60 proteins have the tissue origin of lower respiratory airways. In summary, we demonstrate that our collection system can collect nonvolatile molecules from human exhaled breath in an efficient and comprehensive manner and has the potential to be used for the study of respiratory diseases.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1088/1752-7163/abba87 | DOI Listing |
Small
December 2024
CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China.
Ferroelectric field-effect transistors (FeFETs) commonly utilize traditional oxide ferroelectric materials for their strong remanent polarization. Yet, integrating them with the standard complementary metal oxide semiconductor (CMOS) process is challenging due to the need for lattice matching and the high-temperature rapid thermal annealing process, which are not always compatible with CMOS fabrication. However, the advent of the ferroelectric semiconductor α-InSe offers a compelling solution to these challenges.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
December 2024
Soochow University, College of Chemistry, Chemical Engineering and Materials Science, Ren-ai Road 199#, Industry Park, 215123, Suzhou, CHINA.
The rapid reaction between lead iodide (PbI2) and formamidinium iodide (FAI) complicates the fabrication of high-quality formamidinium lead iodide (FAPbI3) films. Conventional methods, such as using nonvolatile small molecular additives to slow the reaction, often result in buried interfacial voids and molecule diffusion, compromising the devices' operational stability. In this study, we introduced a molecular "thruster"-a hypervalent iodine (III) compound with three carbonyl groups and a C--I⁺ bond-that possesses coordination and dissociation abilities, enabling programed modulation of perovskite-film growth kinetics.
View Article and Find Full Text PDFMolecules
November 2024
Wuhan National Laboratory for Optoelectronics, School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, China.
Among the transition metal oxides, hematite (α-FeO) has been widely used in the preparation of memristors because of its excellent physical and chemical properties. In this paper, α-FeO nanowire arrays with a preferred orientation along the [110] direction were prepared by a facile hydrothermal method and annealing treatment on the FTO substrate, and then α-FeO nanowire array-based Au/α-FeO/FTO memristors were obtained by plating the Au electrodes on the as-prepared α-FeO nanowire arrays. The as-prepared α-FeO nanowire array-based Au/α-FeO/FTO memristors have demonstrated stable nonvolatile bipolar resistive switching behaviors with a high resistive switching ratio of about two orders of magnitude, good resistance retention (up to 10 s), and ultralow set voltage (V = +2.
View Article and Find Full Text PDFFoods
November 2024
Instituto Nacional de Investigação Agrária e Veterinária (INIAV), Av. da República, Quinta do Marquês, 2780-157 Oeiras, Portugal.
Essential oils (EOs) and oleoresins (ORs) are plant-derived extracts that contain both volatile and non-volatile compounds used for flavoring, coloring, and preservation. In the food industry, they are increasingly used to replace synthetic additives, aligning with consumer demand for natural ingredients, by substituting artificial flavors, colorants, and preservatives. Microcapsules can be added to a vast range of foods and beverages, including bakery products, candies, meat products, and sauces, as well as active food packages.
View Article and Find Full Text PDFPhys Chem Chem Phys
December 2024
Department of Chemistry, Organic Electronics Division, Central University of Tamil Nadu, Thiruvarur 610 005, India.
A novel series of D-bridge-A type organic small molecules has been designed, synthesized, and evaluated for non-volatile resistive switching write-once read-many (WORM) memory application. This study explores structure-property relationships by coupling electron-deficient malononitrile units with donors such as dibenzofuran, dibenzothiophene, and triphenylamine. Photophysical investigations revealed significant intramolecular charge transfer interaction, while electrochemical analyses demonstrated optimal band gaps ranging from 2.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!