A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Tetrahydroxystilbene glucoside protects against LPS-induced endothelial dysfunction via inhibiting RhoA/ROCK signaling and F-actin remodeling. | LitMetric

We analyzed the role of the RhoA/ROCK pathway in regulating endothelial dysfunction triggered by LPS and the protective effects of TSG (2, 3, 5, 4'-tetrahydroxystilbene-2-O-β-D-glucoside). Human umbilical vein endothelial cells (HUVECs) were treated with LPS at different concentrations or at different time points. Cells were also pretreated with 30 μM ROCK inhibitor Y27632 for 30 min or different concentrations of TSG for 24 h and then were incubated with 100 μg/ml LPS for another 24 h. The results showed that LPS treatment significantly reduced endothelial cell viability, increased LDH release, and promoted cell necrosis in a dose- and time-dependent manner, which was dramatically inhibited by TSG pretreatment. Furthermore, LPS induction significantly enhanced the expression of RhoA, ROCK1, and ROCK2 and the activation of ROCK; these effects were reduced by TSG pretreatment. The suppression of either RhoA or ROCK significantly improved LPS-induced endothelial cell viability, and reduced cell necrosis and LDH release. In addition, LPS treatment promoted F-actin skeleton rearrangement and contraction ring formation around the plasma membrane, which was greatly inhibited by the suppression of the RhoA/ROCK pathway or TSG pretreatment. In conclusion, TSG may inhibit F-actin cytoskeletal remodeling by blocking RhoA/ROCK signaling and thus reduce LPS-induced endothelial cell toxicity.

Download full-text PDF

Source
http://dx.doi.org/10.4149/gpb_2020028DOI Listing

Publication Analysis

Top Keywords

lps-induced endothelial
12
endothelial cell
12
tsg pretreatment
12
endothelial dysfunction
8
rhoa/rock signaling
8
rhoa/rock pathway
8
lps treatment
8
cell viability
8
ldh release
8
cell necrosis
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!