The surface tension of all aqueous alkali halide solutions is higher than that of pure water. According to the Gibbs adsorption equation, this indicates a net depletion of these ions in the interfacial region. However, simulations and experiments show that large, soft ions, such as I, can accumulate at the liquid/vapor interface. The presence of a loose hydration shell is usually considered to be the reason for this behavior. In this work, we perform computer simulations to characterize the liquid-vapor interface of aqueous alkali chloride and sodium halide solutions systematically, considering all ions from Li to Cs and from F to I. Using computational methods for the removal of surface fluctuations, we analyze the structure of the interface at a dramatically enhanced resolution, showing that the positive excess originates in the very first molecular layer and that the next 3-4 layers account for the net negative excess. With the help of a fictitious system with charge-inverted ion pairs, we also show that it is not possible to rationalize the surface affinity of ions in solutions in terms of the properties of anions and cations separately. Moreover, the surface excess is generally dominated by the smaller of the two ions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jpcb.0c05547 | DOI Listing |
Food Chem
December 2024
Institute of BioPharmceutical Research, Liaocheng University, Liaocheng 252059, China; School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, China. Electronic address:
In this study, ultrasound-assisted glycated ovalbumin (G-UOVA) based on natural deep eutectic solvents (NADES) was prepared using response surface optimization. The binding affinity of (-)-gallocatechin gallate (GCG) to native OVA (NOVA), ultrasound treated OVA (UOVA), glycated OVA (GOVA), and G-UOVA followed G-UOVA > GOVA > UOVA > NOVA. The effects of various modifications and GCG binding on the secondary structure, particle size, and thermal stability of NOVA were investigated.
View Article and Find Full Text PDFBiosensors (Basel)
December 2024
SUNUM Nanotechnology Research and Application Centre, Sabanci University, Istanbul 34956, Türkiye.
Vascular endothelial growth factor (VEGF) is a critical angiogenesis biomarker associated with various pathological conditions, including cancer. This study leverages pre-biotinylated FcγRI interactions with IgG1-type monoclonal antibodies to develop a sensitive VEGF detection method. Utilizing surface plasmon resonance (SPR) technology, we characterized the binding dynamics of immobilized biotinylated FcγRI to an IgG1-type antibody, Bevacizumab (AVT), through kinetic studies and investigated suitable conditions for sensor surface regeneration.
View Article and Find Full Text PDFBiosensors (Basel)
December 2024
Escuela de Biotecnología, Facultad de Ciencias, Ingeniería y Tecnología, Universidad Mayor, Camino La Pirámide 5750, Huechuraba, Santiago 8580745, Chile.
The COVID-19 pandemic has prompted the need for the development of new biosensors for SARS-CoV-2 detection. Particularly, systems with qualities such as sensitivity, fast detection, appropriate to large-scale analysis, and applicable in situ, avoiding using specific materials or personnel to undergo the test, are highly desirable. In this regard, developing an electrochemical biosensor based on peptides derived from the angiotensin-converting enzyme receptor 2 (ACE2) is a possible answer.
View Article and Find Full Text PDFBiosensors (Basel)
December 2024
Center of Excellence for Trace Analysis and Biosensor, Prince of Songkla University, Hat Yai 90110, Thailand.
The activated carbon from marigold flowers (MG) was used to make an unlabeled electrochemical immunosensor to determine prostate cancer. MG was synthesized by hydrothermal carbonization and pyrolysis. MG had a large surface area, was highly conductive, and biocompatible.
View Article and Find Full Text PDFGels
December 2024
Institute for Thermal Separation Processes, Hamburg University of Technology, 21073 Hamburg, Germany.
This study explores the innovative potential of native lignin as a sustainable biopolyol for synthesizing polyurethane aerogels with variable microstructures, significant specific surface areas, and high mechanical stability. Three types of lignin-Organosolv, Aquasolv, and Soda lignin-were evaluated based on structural characteristics, Klason lignin content, and particle size, with Organosolv lignin being identified as the optimal candidate. The microstructure of lignin polyurethane samples was adjustable by solvent choice: Gelation in DMSO and pyridine, with high affinity to lignin, resulted in dense materials with low specific surface areas, while the use of the low-affinity solvent e.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!