New Insights into the Radical Chemistry and Product Distribution in the OH-Initiated Oxidation of Benzene.

Environ Sci Technol

Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, California 91125, United States.

Published: November 2020

Emissions of aromatic compounds cause air pollution and detrimental health effects. Here, we explore the reaction kinetics and products of key radicals in benzene photo-oxidation. After initial OH addition and reaction with O, the effective production rates of phenol and bicyclic peroxy radical (BCP-peroxy) are experimentally constrained at 295 K to be 420 ± 80 and 370 ± 70 s, respectively. These rates lead to approximately 53% yield for phenol and 47% yield for BCP-peroxy under atmospheric conditions. The reaction of BCP-peroxy with NO produces bicyclic hydroxy nitrate with a branching ratio <0.2%, indicating efficient NO recycling. Similarly, the reaction of BCP-peroxy with HO largely recycles HO, producing the corresponding bicyclic alkoxy radical (BCP-oxy). Because of the presence of C-C double bonds and multiple functional groups, the chemistry of BCP-oxy and other alkoxy radicals in the system is diverse. Experimental results suggest the aldehydic H-shift and ring-closure to produce an epoxide functionality could be competitive with classic decomposition of alkoxy radicals. These reactions are potential sources of highly oxygenated molecules. Finally, despite the large number of compounds observed in our study, we are unable to account for ∼20% of the carbon flow.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.est.0c04780DOI Listing

Publication Analysis

Top Keywords

insights radical
4
radical chemistry
4
chemistry product
4
product distribution
4
distribution oh-initiated
4
oh-initiated oxidation
4
oxidation benzene
4
benzene emissions
4
emissions aromatic
4
aromatic compounds
4

Similar Publications

With 3D printing technology, fiber-reinforced polymer composites can be printed with radical shapes and properties, resulting in varied mechanical performances. Their high strength, light weight, and corrosion resistance are already advantages that make them viable for physical civil infrastructure. It is important to understand these composites' behavior when used in concrete, as their association can impact debonding failures and overall structural performance.

View Article and Find Full Text PDF

2-phenylchromen-4-one, commonly known as flavone, plays multifaceted roles in biological response that can be abundantly present in natural sources. The methoxy group in naturally occurring flavones promotes cytotoxic activity in various cancer cell lines by targeting protein markers, in facilitating ligand-protein binding mechanisms and activating cascading downstream signaling pathways leading to cell death. However, the lipophilic nature of these analogs is a key concern as it impacts drug membrane transfer.

View Article and Find Full Text PDF

Fifteen compounds (-) constructed on a hybrid structure combining a β-phenyl-α,β-unsaturated carbonyl template and a 2-aminothiazol-4(5)-one scaffold were designed and synthesized as potential novel anti-tyrosinase substances. Two compounds ( and ) showed more potent inhibition against mushroom tyrosinase than kojic acid, and the inhibitory activity of (IC value: 1.60 μM) was 11 times stronger than that of kojic acid.

View Article and Find Full Text PDF

Enhanced Photocatalytic Oxidative Coupling of Methane over Metal-Loaded TiO Nanowires.

Molecules

January 2025

College of Computer Science and Cyber Security (Pilot Software College), Chengdu University of Technology, Chengdu 610059, China.

The photocatalytic oxidative coupling of methane (OCM) on metal-loaded one-dimensional TiO nanowires (TiO NWs) was performed. With metal loading, the electric and optical properties of TiO NWs were adjusted, contributing to the improvement of the activity and selectivity of the OCM reaction. In the photocatalytic OCM reaction, the 1.

View Article and Find Full Text PDF

The Role of Polyphenols in Abiotic Stress Tolerance and Their Antioxidant Properties to Scavenge Reactive Oxygen Species and Free Radicals.

Antioxidants (Basel)

January 2025

State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou 311300, China.

Plants have evolved complex mechanisms to cope with diverse abiotic stresses, with the phenylpropanoid pathway playing a central role in stress adaptation. This pathway produces an array of secondary metabolites, particularly polyphenols, which serve multiple functions in plant growth, development, regulating cellular processes, and stress responses. Recent advances in understanding the molecular mechanisms underlying phenylpropanoid metabolism have revealed complex regulatory networks involving MYB transcription factors as master regulators and their interactions with stress signaling pathways.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!