A spate of research has examined how individuals regulate effortful processing in service of goal-directed behaviors. One key challenge in developing an account of this regulation is quantifying the momentary amount of cognitive effort exerted by an individual in service of their goals. A growing body of literature has suggested using task-evoked pupil dilations as a potential psychophysiological index of cognitive effort; however, it remains unclear whether pupil diameter indexes effort exertion or merely reflects task load, as both are tightly intertwined. Here, we attempt to disentangle these disparate accounts of pupil diameter by leveraging individual differences in executive function (as measured by Stroop interference) and a motivational manipulation (i.e., monetary incentives) while participants complete a task-switching paradigm. In line with both the effort and demand accounts, we observed larger task-evoked pupillary responses (TEPRs) for trials in which there was a task switch versus a task repetition. Additionally, we found that larger phasic pupillary responses at baseline (without reward incentives) predicted smaller switch costs. Mirroring this pattern, individual differences in reward-induced switch cost reductions were predicted by reward-induced increases in phasic pupil diameter. Finally, we observed that the interrelationship between effort and pupil diameter at baseline was modulated by individual differences in Stroop interference costs. Together, these findings provide support for an effort account of TEPRs, and suggest that pupillometry is a viable index of cognitive effort.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3758/s13415-020-00843-z | DOI Listing |
Psychon Bull Rev
January 2025
Department of Psychology, McGill University, 2001 Av. McGill College, Montréal, QC, H3A 1G1, Canada.
A growing body of evidence across psychology suggests that (cognitive) effort exertion increases in proximity to a goal state. For instance, previous work has shown that participants respond more quickly, but not less accurately, when they near a goal-as indicated by a filling progress bar. Yet it remains unclear when over the course of a cognitively demanding task do people monitor progress information: Do they continuously monitor their goal progress over the course of a task, or attend more frequently to it as they near their goal? To answer this question, we used eye-tracking to examine trial-by-trial changes in progress monitoring as participants completed blocks of an attentionally demanding oddball task.
View Article and Find Full Text PDFJ Oral Facial Pain Headache
December 2024
Neuroscience of Emotion Cognition and Nociception Group (NeuroCEN Group), Faculty of Odontology, Complutense University of Madrid, 28040 Madrid, Spain.
The aims of the study are to analyze the influence of pain and no pain expectations on the physiological (electromyography (EMG) and pupillometry) and cognitive (Numerical Rating Scale (NRS)) response to pain. Pain expectation and no pain expectation situations were induced by employing instructional videos. The induction of pain was performed by palpating the masseter with an algometer in a sample of 2 groups: 30 healthy participants (control group) and 30 patients (Temporomandibular disorders (TMD) group) with chronic myofascial pain with referral in the masseter muscle (Diagnostic Criteria for Temporomandibular Dissorders (DC/TMD)).
View Article and Find Full Text PDFSensors (Basel)
December 2024
Ophthalmic Instrumentation Development Lab, The Wilmer Eye Institute, The Johns Hopkins University School of Medicine, Wilmer 233, 600 N. Wolfe St., Baltimore, MD 21287, USA.
Signal amplitudes obtained from retinal scanning depend on numerous factors. Working with polarized light to interrogate the retina, large parts of which are birefringent, is even more prone to artifacts. This article demonstrates the necessity of using normalization when working with retinal birefringence scanning signals in polarization-sensitive ophthalmic instruments.
View Article and Find Full Text PDFPLoS One
January 2025
Department of Neurology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.
Purpose: A relative afferent pupillary defect (RAPD) is a characteristic clinical sign of optic neuritis (ON). Here, we systematically evaluated ultrasound pupillometry (UP) for the detection of an RAPD in patients with ON, including a comparison with infrared video pupillometry (IVP), the gold standard for objective pupillometry.
Materials And Methods: We enrolled 40 patients with acute (n = 9) or past (n = 31) ON (ON+), 31 patients with multiple sclerosis (MS) without prior ON, and 50 healthy controls (HC) in a cross-sectional observational study.
J Cogn Neurosci
January 2025
Queen's University, Kingston, Ontario, Canada.
Pupil responses are commonly used to provide insight into visual perception, autonomic control, cognition, and various brain disorders. However, making inferences from pupil data can be complicated by nonlinearities in pupil dynamics and variability within and across individuals, which challenge the assumptions of linearity or group-level homogeneity required for common analysis methods. In this study, we evaluated luminance evoked pupil dynamics in young healthy adults (n = 10, M:F = 5:5, ages 19-25 years) by identifying nonlinearities, variability, and conserved relationships across individuals to improve the ability to make inferences from pupil data.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!