A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Flexible Multiplexed InO Nanoribbon Aptamer-Field-Effect Transistors for Biosensing. | LitMetric

Flexible sensors are essential for advancing implantable and wearable bioelectronics toward monitoring chemical signals within and on the body. Developing biosensors for monitoring multiple neurotransmitters in real time represents a key application that will increase understanding of information encoded in brain neurochemical fluxes. Here, arrays of devices having multiple InO nanoribbon field-effect transistors (FETs) were fabricated on 1.4-μm-thick polyethylene terephthalate (PET) substrates using shadow mask patterning techniques. Thin PET-FET devices withstood crumpling and bending such that stable transistor performance with high mobility was maintained over >100 bending cycles. Real-time detection of the small-molecule neurotransmitters serotonin and dopamine was achieved by immobilizing recently identified high-affinity nucleic-acid aptamers on individual InO nanoribbon devices. Limits of detection were 10 fM for serotonin and dopamine with detection ranges spanning eight orders of magnitude. Simultaneous sensing of temperature, pH, serotonin, and dopamine enabled integration of physiological and neurochemical data from individual bioelectronic devices.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7509003PMC
http://dx.doi.org/10.1016/j.isci.2020.101469DOI Listing

Publication Analysis

Top Keywords

ino nanoribbon
12
serotonin dopamine
12
flexible multiplexed
4
multiplexed ino
4
nanoribbon aptamer-field-effect
4
aptamer-field-effect transistors
4
transistors biosensing
4
biosensing flexible
4
flexible sensors
4
sensors essential
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!