Background Artificial intelligence (AI) has significantly impacted numerous medical specialties with high emphasis on radiology. Associated novel diagnostic methods have become a rapidly emerging hot topic, and it is essential to provide insights into quantitative analysis of the growing literature. Purpose The purpose of this study is to highlight future academic trends, identify potential research gaps, and analyze scientific landscape of AI in the field of medicine. The main aim is to explore comprehensive dataset over a 46-year period in terms of publication type, publication citation, country of origin, institution, and medical specialty. Material and Methods The Web of Science database was searched from 1975 to 2020, and publications on AI were explored. Both original research reports and review articles were included in comprehensive bibliometric analysis. Descriptive statistics were calculated, and numerous variables were applied, namely year of publication, institution, type of publication, specialty area, country of origin, and citation numbers, and the Kruskal-Wallis analysis of variance was used. Results A total of 117,974 relevant citations were retrieved, of which 83,979 original research and review articles were retained for analysis. Not surprisingly, the largest proportion of citations were from the United States (23%, n = 19,180) followed by China, Spain, England, and Germany. The number of citations was relatively consistent during the 1970s and emerging gradually during the 1980s. However, ongoing scientific trend positively evolved, and the numbers started to grow significantly in the 1990s and demonstrated continuous increasing wave since then. The most frequently represented key medical specialties were oncology, radiology, neuroradiology, and ophthalmology. Overall, no major statistical difference was found between these four domains (p = 0.753). Conclusions In summary, research on AI-powered technologies in the medical domain was at early stage in the 1970s. However, associated deep learning algorithms significantly attracted and revolutionized the scientific community with subsequent evolution of research and exponential growth of multidisciplinary publications since that time. Work in this field has impacted radiology as an area of predominant interest and has been led by institutions in the United States, Spain, France, China, and England. The bibliometric study reported herein can provide a broad overview and valuable guidance to help medical researchers gain insights into key points and trace the global trends regarding the status of AI research in medicine, particularly in radiology and other relevant multispecialty areas.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7567304PMC
http://dx.doi.org/10.7759/cureus.10961DOI Listing

Publication Analysis

Top Keywords

artificial intelligence
8
emphasis radiology
8
medical specialties
8
type publication
8
country origin
8
review articles
8
united states
8
medical
6
radiology
5
intelligence medical
4

Similar Publications

Motivation: Ensuring connectivity and preventing fractures in tubular object segmentation are critical for downstream analyses. Despite advancements in deep neural networks (DNNs) that have significantly improved tubular object segmentation, existing methods still face limitations. They often rely heavily on precise annotations, hindering their scalability to large-scale unlabeled image datasets.

View Article and Find Full Text PDF

Chemotherapy is a potent tool against cancer, but drug resistance remains a major obstacle. To combat this, understanding the molecular mechanisms behind resistance in cancer cells and the protein expression changes driving these mechanisms is crucial. Targeting the Ubiquitin-Proteasome System (UPS) has proven effective in treating multiple myeloma and shows promise for solid tumours.

View Article and Find Full Text PDF

Developing a decision support tool to predict delayed discharge from hospitals using machine learning.

BMC Health Serv Res

January 2025

Department of Industrial Engineering, Dalhousie University, PO Box 15000, Halifax, B3H 4R2, NS, Canada.

Background: The growing demand for healthcare services challenges patient flow management in health systems. Alternative Level of Care (ALC) patients who no longer need acute care yet face discharge barriers contribute to prolonged stays and hospital overcrowding. Predicting these patients at admission allows for better resource planning, reducing bottlenecks, and improving flow.

View Article and Find Full Text PDF

Purpose: The study aimed to develop a deep learning model for rapid, automated measurement of full-spine X-rays in adolescents with Adolescent Idiopathic Scoliosis (AIS). A significant challenge in this field is the time-consuming nature of manual measurements and the inter-individual variability in these measurements. To address these challenges, we utilized RTMpose deep learning technology to automate the process.

View Article and Find Full Text PDF

UniAMP: enhancing AMP prediction using deep neural networks with inferred information of peptides.

BMC Bioinformatics

January 2025

College of Artificial Intelligence, Nanjing Agricultural University, Weigang No.1, Nanjing, 210095, Jiangsu, China.

Antimicrobial peptides (AMPs) have been widely recognized as a promising solution to combat antimicrobial resistance of microorganisms due to the increasing abuse of antibiotics in medicine and agriculture around the globe. In this study, we propose UniAMP, a systematic prediction framework for discovering AMPs. We observe that feature vectors used in various existing studies constructed from peptide information, such as sequence, composition, and structure, can be augmented and even replaced by information inferred by deep learning models.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!