Activation of the cannabinoid CB1 receptor induces neuroprotection against brain ischemia/reperfusion injury (IRI); however, the mechanism is still unknown. In this study, we used oxygen-glucose deprivation/reoxygenation (OGD/R)-induced injury in neuronal cells and middle cerebral artery occlusion (MCAO)-induced brain IRI in rats to mimic ischemic brain injury, and hypothesized that the CB1 receptor agonist arachidonyl-2-chloroethylamide (ACEA) would protect ischemic neurons by inhibiting mitochondrial fission via dynamin-related protein 1 (Drp1). We found that OGD/R injury reduced cell viability and mitochondrial function, increased lactate dehydrogenase (LDH) release, and increased cell apoptosis, and mitochondrial fission. Notably, ACEA significantly abolished the OGD/R-induced neuronal injuries described above. Similarly, ACEA significantly reversed MCAO-induced increases in brain infarct volume, neuronal apoptosis and mitochondrial fission, leading to the recovery of neurological functions. The neuroprotective effects of ACEA were obviously blocked by coadministration of the CB1 receptor antagonist AM251 or by the upregulation of Drp1 expression, indicating that ACEA alleviates brain IRI via the CB1-Drp1 pathway. Our findings suggest that the CB1 receptor links aberrant mitochondrial fission to brain IRI, providing a new therapeutic target for brain IRI treatment.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7548964 | PMC |
http://dx.doi.org/10.1038/s41420-020-00338-3 | DOI Listing |
Pharmaceuticals (Basel)
January 2025
Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Texas Southern University, Houston, TX 77004, USA.
Both hydrogen sulfide and endocannabinoids can protect the neural retina from toxic insults under in vitro and in vivo conditions. The aim of the present study was two-fold: (a) to examine the neuroprotective action of cannabinoids [methanandamide and 2-arachidonyl glycerol (2-AG)] against hydrogen peroxide (HO)-induced oxidative damage in the isolated bovine retina and (b) to evaluate the role of endogenously biosynthesized hydrogen sulfide (HS) in the inhibitory actions of cannabinoids on the oxidative stress in the bovine retina. Isolated neural retinas from cows were exposed to oxidative damage using HO (100 µM) for 10 min.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya 16/10, 117997 Moscow, Russia.
2-arachnadoyl glycerol (2-AG) is one of the most common endocannabinoid molecules with anti-proliferative, cytotoxic, and pro-proliferative effects on different types of tumors. Typically, it induces cell death via cannabinoid receptor 1/2 (CB1/CB2)-linked ceramide production. In breast cancer, ceramide is counterbalanced by the sphingosine-1-phosphate, and thus the mechanisms of 2-AG influence on proliferation are poorly understood.
View Article and Find Full Text PDFJ Nat Prod
January 2025
Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, South Carolina 29208, United States.
Cannabidiol (CBD) is a natural product associated with a wide range of biological and therapeutic activities. Despite the widespread cultural acceptance of CBD as a medicinal agent, much remains to be determined regarding its precise mechanism(s) of action in treating multiple conditions. CBD has been shown to promiscuously interact with several neurological targets with varying affinities.
View Article and Find Full Text PDFCells
January 2025
Department of Psychology, School of Psychological Sciences, University of Haifa, Haifa 3498838, Israel.
Evidence indicates a bidirectional link between depressive symptoms and neuroinflammation. This study evaluated chronic cannabidiol (CBD) treatment effects in male and female rats subjected to the unpredictable chronic mild stress (UCMS) model of depression. We analyzed the gene expression related to neuroinflammation, cannabinoid signaling, estrogen receptors, and specific microRNAs in the ventromedial prefrontal cortex (vmPFC), CA1, and ventral subiculum (VS).
View Article and Find Full Text PDFCells
January 2025
Department of Biomedical & Molecular Sciences, Queen's University, Kingston, ON K7L 3N6, Canada.
Metastasizing cancer cells surreptitiously can adapt to metabolic activity during their invasion. By initiating their communications for invasion, cancer cells can reprogram their cellular activities to initiate their proliferation and migration and uniquely counteract metabolic stress during their progression. During this reprogramming process, cancer cells' metabolism and other cellular activities are integrated and mutually regulated by tunneling nanotube communications to alter their specific metabolic functional drivers of tumor growth and progression.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!