Gastric cancer (GC), one of the most common cancers around the world, is a multifactorial disease and there are many risk factors for this disease. Assessing the risk of GC is essential for choosing an appropriate healthcare strategy. There have been very few studies conducted on the development of risk assessment systems for GC. This study is aimed at providing a medical decision support system based on soft computing using fuzzy cognitive maps (FCMs) which will help healthcare professionals to decide on an appropriate individual healthcare strategy based on the risk level of the disease. FCMs are considered as one of the strongest artificial intelligence techniques for complex system modeling. In this system, an FCM based on Nonlinear Hebbian Learning (NHL) algorithm is used. The data used in this study are collected from the medical records of 560 patients referring to Imam Reza Hospital in Tabriz City. 27 effective features in gastric cancer were selected using the opinions of three experts. The prediction accuracy of the proposed method is 95.83%. The results show that the proposed method is more accurate than other decision-making algorithms, such as decision trees, Naïve Bayes, and ANN. From the perspective of healthcare professionals, the proposed medical decision support system is simple, comprehensive, and more effective than previous models for assessing the risk of GC and can help them to predict the risk factors for GC in the clinical setting.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7556058PMC
http://dx.doi.org/10.1155/2020/1016284DOI Listing

Publication Analysis

Top Keywords

medical decision
12
decision support
12
support system
12
risk factors
12
gastric cancer
12
fuzzy cognitive
8
assessing risk
8
healthcare strategy
8
healthcare professionals
8
proposed method
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!