Inter- and intra-patient ECG heartbeat classification for arrhythmia detection: A sequence to sequence deep learning approach.

Proc IEEE Int Conf Acoust Speech Signal Process

School of Informatics, Computing and Cyber Systems, Northern Arizona University, Flagstaff, AZ.

Published: May 2019

Electrocardiogram (ECG) signal is a common and powerful tool to study heart function and diagnose several abnormal arrhythmias. While there have been remarkable improvements in cardiac arrhythmia classification methods, they still cannot offer acceptable performance in detecting different heart conditions, especially when dealing with imbalanced datasets. In this paper, we propose a solution to address this limitation of current classification approaches by developing an automatic heartbeat classification method using deep convolutional neural networks and sequence to sequence models. We evaluated the proposed method on the MIT-BIH arrhythmia database, considering the intra-patient and inter-patient paradigms, and the AAMI EC57 standard. The evaluation results for both paradigms show that our method achieves the best performance in the literature (a positive predictive value of 96.46% and sensitivity of 100% for the category S, and a positive predictive value of 98.68% and sensitivity of 97.40% for the category F for the intra-patient scheme; a positive predictive value of 92.57% and sensitivity of 88.94% for the category S, and a positive predictive value of 99.50% and sensitivity of 99.94% for the category V for the inter-patient scheme.).

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7570975PMC
http://dx.doi.org/10.1109/icassp.2019.8683140DOI Listing

Publication Analysis

Top Keywords

positive predictive
16
heartbeat classification
8
sequence sequence
8
category positive
8
inter- intra-patient
4
intra-patient ecg
4
ecg heartbeat
4
classification
4
classification arrhythmia
4
arrhythmia detection
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!