Cardiovascular diseases are the leading cause of death worldwide. Changes in lifestyle and/or pharmacological treatment are able to reduce the burden of coronary artery diseases (CAD) and early diagnosis is crucial for the timely and optimal management of the disease. Stress testing is a good method to measure the burden of CAD but it is time consuming and pharmacological testing may not fully mimic exercise test. The objectives of the present project were to characterize the metabolic profile of the population undergoing pharmacological and exercise stress testing to evaluate possible differences between them, and to assess the capacity of H NMR spectroscopy to predict positive stress testing. Pattern recognition was applied to H NMR spectra from serum of patients undergoing stress test and metabolites were quantified. The effects of the stress test, confounding variables and the ability to predict ischemia were evaluated using OPLS-DA. There was an increase in lactate and alanine concentrations in post-test samples in patients undergoing exercise test, but not in those submitted to pharmacological testing. However, when considering only pharmacological patients, those with a positive test result, showed increased serum lactate, that was masked by the much larger amount of lactate associated to exercise testing. In conclusion, we have established that pharmacological stress test does not reproduce the dynamic changes observed in exercise stress. Although there is promising evidence suggesting that H NMR based metabolomics could predict stress test results, further studies with much larger populations will be required in order to obtain a definitive answer.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7575600 | PMC |
http://dx.doi.org/10.1038/s41598-020-74880-6 | DOI Listing |
Sensors (Basel)
December 2024
Department of Mechanical Engineering, Brigham Young University, Provo, UT 84602, USA.
Flexible high-deflection strain gauges have been demonstrated to be cost-effective and accessible sensors for capturing human biomechanical deformations. However, the interpretation of these sensors is notably more complex compared to conventional strain gauges, particularly during dynamic motion. In addition to the non-linear viscoelastic behavior of the strain gauge material itself, the dynamic response of the sensors is even more difficult to capture due to spikes in the resistance during strain path changes.
View Article and Find Full Text PDFSensors (Basel)
December 2024
Department of Computer Engineering, Faculty of Engineering, University of Rijeka, Vukovarska 58, 51000 Rijeka, Croatia.
In the field of muscle fatigue models (MFMs), the prior research has demonstrated success in fitting data in specific contexts, but it falls short in addressing the diverse efforts and rapid changes in exertion typical of soccer matches. This study builds upon the existing model, aiming to enhance its applicability and robustness to dynamic demand shifts. The objective is to encapsulate the complexities of soccer dynamics with a streamlined set of parameters.
View Article and Find Full Text PDFPolymers (Basel)
December 2024
Hunan Mine Carbon Sequestration and Sink Enhancement Engineering Technology Research Center, Changsha 410151, China.
As is widely accepted, cumulative strain and improvement mechanisms of stabilized soil are critical factors for the long-term reliable operation of expressways and high-speed railways. Based on relevant research findings, xanthan gum biopolymer is regarded as a green and environmentally friendly curing agent in comparison to traditional stabilizers, such as cement, lime, and fly ash. However, little attention has been devoted to the cumulative strain and improvement mechanisms of soil reinforced by xanthan gum biopolymer under traffic loading.
View Article and Find Full Text PDFNutrients
December 2024
Department of Clinical Medicine, Aarhus University Hospital, Aarhus University, Palle Juul-Jensens Boulevard 165, 8200 Aarhus, Denmark.
Background: This study aimed to compare the effects of a carbohydrate (CHO) hydrogel with (ALG-CP) or without (ALG-C) branched-chain amino acids, and a CHO-only non-hydrogel (CON), on cycling performance. The hydrogels, encapsulated in an alginate matrix, are designed to control CHO release, potentially optimising absorption, increasing substrate utilisation, and reducing gastrointestinal distress as well as carious lesions.
Methods: In a randomised, double-blinded, crossover trial, 10 trained male cyclists/triathletes completed three experimental days separated by ~6 days.
Nutrients
December 2024
Facultad de Salud Pública y Nutrición (FaSPyN), Universidad Autónoma de Nuevo León (UANL), Monterrey 64460, Nuevo León, Mexico.
: The prevalence of metabolic syndrome in children has been increasing, raising concerns about early detection and clinical management. Adipokines, which are secreted by adipose tissue, play a critical role in metabolic regulation and inflammation, while gamma-glutamyl transferase (GGT), as a liver enzyme, is linked to oxidative stress and metabolic disorders. The objective was to examine the association of circulating adipokines and GGT with metabolic syndrome risk in school-aged children from Northeast Mexico.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!